scholarly journals Assessment of hepatic function, perfusion and parenchyma attenuation with indocyanine green, ultrasound and computed tomography in a healthy rat model: Preliminary determination of baseline parameters in a healthy liver

PLoS ONE ◽  
2021 ◽  
Vol 16 (12) ◽  
pp. e0261447
Author(s):  
Victor Lopez-Lopez ◽  
Nuria Garcia-Carrillo ◽  
Diego de Gea ◽  
Lidia Oltra ◽  
Carlos Alberto González-Bermúdez ◽  
...  

Background Defining reference intervals in experimental animal models plays a crucial role in pre-clinical studies. The hepatic parameters in healthy animals provide useful information about type and extension of hepatic damage. However, in the majority of the cases, to obtain them require an invasive techniques. Our study combines these determinations with dynamic functional test and imaging techniques to implement a non-invasive protocol for liver evaluation. The aim of the study was to determine reference intervals for hepatic function, perfusion and parenchyma attenuation with analytical and biochemical blood parameters, indocyanine green, ultrasound and computed tomography in six healthy SD rats. Methods Six males healthy SD rats were followed for 4 weeks. To determine hepatic function, perfusion and parenchyma attenuation analytical and biochemical blood parameters, indocyanine green, ultrasound and computed tomography were studied. Results were expressed as Means ± standard error of mean (SEM). The significance of differences was calculated by using student t-test, p < 0.05 was considered statistically significant. Results Indocyanine green clearance 5 and 10 minutes after its injection was 80.12% and 96.59%, respectively. Approximate rate of decay during the first 5 minutes after injection was 38% per minute. Hepatic perfusion evaluation with the high-frequency ultrasound was related to cardiovascular hemodynamic and renal perfusion. Portal area, hepatic artery resistance index, hepatic artery and portal peak systolic velocity and average between hepatic artery and porta was 3.41 ± 0.62 mm2, 0.57 ± 0.04 mm2/s, 693.24±102.53 mm2/s, 150.72 ± 17.80 mm2/s and 4.82 ± 0.96 mm2/s, respectively. Heart rate, cardiac output, left renal artery diammetre and renal blood flow were 331.01 ± 22.22 bpm, 75.58 ± 8.72 mL/min, 0.88 ± 0.04 mm2 and 13.65 ± 1.95 mm2/s. CT-scan hepatic average volume for each rat were 21.08±3.32, 17.57±2.76, 14.87±2.83 and 13.67±2.45 cm3 with an average attenuation coefficient of 113.51±18.08, 129,19±7.18, 141,47±1.95 y 151,67±1.2 HU. Conclusion Indocyanine green and high-frequency ultrasound could be used in rats as a suitable marker of liver function. Computed tomography, through the study of raw data, help to characterize liver parenchyma, and could be a potential tool for early detection of liver parenchymal alterations and linear follow-up of patients. Further studies in rats with liver disease are necessary to verify the usefulness of these parameters.

2018 ◽  
Vol 98 (3) ◽  
pp. 363-367 ◽  
Author(s):  
J. Kim ◽  
T.J. Shin ◽  
H.J. Kong ◽  
J.Y. Hwang ◽  
H.K. Hyun

The extent of dental tissue destruction during the treatment of white spot lesions (WSLs) increases with the severity of the lesion. If the depth and shape of WSLs can be predicted with a noninvasive diagnostic method before dental caries treatment, more conservative interventions can be planned. Given the superiority of high-frequency ultrasound (HFUS) imaging in observing the internal structures of the body, the present study aimed to verify the possibility of HFUS imaging to examine the depth and shape of WSLs. We prepared tooth samples and developed a biomicroscopic system with a HFUS transducer to obtain images of normal and WSL regions. HFUS images were compared with conventional ultrasound images and micro–computed tomography images. HFUS distinctly differentiated demineralization within WSL and normal regions. WSL depth calculated in the micro–computed tomography image was similar to that in HFUS. This study revealed that HFUS imaging has the potential to detect early dental caries and offer information on the invasion depth of early dental caries quantitatively.


Sign in / Sign up

Export Citation Format

Share Document