scholarly journals Correction: Genetic interactions among ADAMTS metalloproteases and basement membrane molecules in cell migration in Caenorhabditis elegans

PLoS ONE ◽  
2021 ◽  
Vol 16 (12) ◽  
pp. e0261880
Author(s):  
Ayaka Imanishi ◽  
Yuma Aoki ◽  
Masaki Kakehi ◽  
Shunsuke Mori ◽  
Tomomi Takano ◽  
...  
2000 ◽  
Vol 2 (3) ◽  
pp. 131-136 ◽  
Author(s):  
Peter W. Reddien ◽  
H. Robert Horvitz

Genetics ◽  
1995 ◽  
Vol 141 (4) ◽  
pp. 1365-1382 ◽  
Author(s):  
D M Raizen ◽  
R Y Lee ◽  
L Avery

Abstract We studied the control of pharyngeal excitation in Caenorhabditis elegans. By laser ablating subsets of the pharyngeal nervous system, we found that the MC neuron type is necessary and probably sufficient for rapid pharyngeal pumping. Electropharyngeograms showed that MC transmits excitatory postsynaptic potentials, suggesting that MC acts as a neurogenic pacemaker for pharyngeal pumping. Mutations in genes required for acetylcholine (ACh) release and an antagonist of the nicotinic ACh receptor (nAChR) reduced pumping rates, suggesting that a nAChR is required for MC transmission. To identify genes required for MC neurotransmission, we screened for mutations that cause slow pumping but no other defects. Mutations in two genes, eat-2 and eat-18, eliminated MC neurotransmission. A gain-of-function eat-18 mutation, ad820sd, and a putative loss-of-function eat-18 mutation, ad1110, both reduced the excitation of pharyngeal muscle in response to the nAChR agonists nicotine and carbachol, suggesting that eat-18 is required for the function of a pharyngeal nAChR. Fourteen recessive mutations in eat-2 fell into five complementation classes. We found allele-specific genetic interactions between eat-2 and eat-18 that correlated with complementation classes of eat-2. We propose that eat-18 and eat-2 function in a multisubunit protein complex involved in the function of a pharyngeal nAChR.


2018 ◽  
Vol 115 (45) ◽  
pp. 11537-11542 ◽  
Author(s):  
Rodrigo Cáceres ◽  
Nagagireesh Bojanala ◽  
Laura C. Kelley ◽  
Jes Dreier ◽  
John Manzi ◽  
...  

During invasion, cells breach basement membrane (BM) barriers with actin-rich protrusions. It remains unclear, however, whether actin polymerization applies pushing forces to help break through BM, or whether actin filaments play a passive role as scaffolding for targeting invasive machinery. Here, using the developmental event of anchor cell (AC) invasion inCaenorhabditis elegans, we observe that the AC deforms the BM and underlying tissue just before invasion, exerting forces in the tens of nanonewtons range. Deformation is driven by actin polymerization nucleated by the Arp2/3 complex and its activators, whereas formins and cross-linkers are dispensable. Delays in invasion upon actin regulator loss are not caused by defects in AC polarity, trafficking, or secretion, as appropriate markers are correctly localized in the AC even when actin is reduced and invasion is disrupted. Overall force production emerges from this study as one of the main tools that invading cells use to promote BM disruption inC. elegans.


2008 ◽  
Vol 105 (52) ◽  
pp. 20804-20809 ◽  
Author(s):  
Y. Kubota ◽  
K. Ohkura ◽  
K. K. Tamai ◽  
K. Nagata ◽  
K. Nishiwaki

Genetics ◽  
2013 ◽  
Vol 196 (2) ◽  
pp. 471-479 ◽  
Author(s):  
Hon-Song Kim ◽  
Yuko Kitano ◽  
Masataka Mori ◽  
Tomomi Takano ◽  
Thomas Edward Harbaugh ◽  
...  

Development ◽  
1991 ◽  
Vol 113 (3) ◽  
pp. 797-803 ◽  
Author(s):  
M.J. Stern ◽  
H.R. Horvitz

In wild-type Caenorhabditis elegans hermaphrodites, two bilaterally symmetric sex myoblasts (SMs) migrate anteriorly to flank the precise center of the gonad, where they divide to generate the muscles required for egg laying (J. E. Sulston and H. R. Horvitz (1977) Devl Biol. 56, 110–156). Although this migration is largely independent of the gonad, a signal from the gonad attracts the SMs to their precise final positions (J. H. Thomas, M. J. Stern and H. R. Horvitz (1990) Cell 62, 1041–1052). Here we show that mutations in either of two genes, egl-15 and egl-17, cause the premature termination of the migrations of the SMs. This incomplete migration is caused by the repulsion of the SMs by the same cells in the somatic gonad that are the source of the attractive signal in wild-type animals.


Sign in / Sign up

Export Citation Format

Share Document