scholarly journals Functional Characterization of a Novel Class of Morantel-Sensitive Acetylcholine Receptors in Nematodes

2015 ◽  
Vol 11 (12) ◽  
pp. e1005267 ◽  
Author(s):  
Elise Courtot ◽  
Claude L. Charvet ◽  
Robin N. Beech ◽  
Abdallah Harmache ◽  
Adrian J. Wolstenholme ◽  
...  
Cancers ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 3141
Author(s):  
Anna Maria Lucianò ◽  
Ada Maria Tata

In the last two decades, the scientific community has come to terms with the importance of non-neural acetylcholine in light of its multiple biological and pathological functions within and outside the nervous system. Apart from its well-known physiological role both in the central and peripheral nervous systems, in the autonomic nervous system, and in the neuromuscular junction, the expression of the acetylcholine receptors has been detected in different peripheral organs. This evidence has contributed to highlight new roles for acetylcholine in various biological processes, (e.g., cell viability, proliferation, differentiation, migration, secretion). In addition, growing evidence in recent years has also demonstrated new roles for acetylcholine and its receptors in cancer, where they are involved in the modulation of cell proliferation, apoptosis, angiogenesis, and epithelial mesenchymal transition. In this review, we describe the functional characterization of acetylcholine receptors in different tumor types, placing attention on melanoma. The latest set of data accessible through literature, albeit limited, highlights how cholinergic receptors both of muscarinic and nicotinic type can play a relevant role in the migratory processes of melanoma cells, suggesting their possible involvement in invasion and metastasis.


Toxins ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 197
Author(s):  
Matthew J. Rybin ◽  
Henrik O’Brien ◽  
Iris Bea L. Ramiro ◽  
Layla Azam ◽  
J. Michael McIntosh ◽  
...  

We report the discovery and functional characterization of αM-Conotoxin MIIIJ, a peptide from the venom of the fish-hunting cone snail Conus magus. Injections of αM-MIIIJ induced paralysis in goldfish (Carassius auratus) but not mice. Intracellular recording from skeletal muscles of fish (C. auratus) and frog (Xenopus laevis) revealed that αM-MIIIJ inhibited postsynaptic nicotinic acetylcholine receptors (nAChRs) with an IC50 of ~0.1 μM. With comparable potency, αM-MIIIJ reversibly blocked ACh-gated currents (IACh) of voltage-clamped X. laevis oocytes exogenously expressing nAChRs cloned from zebrafish (Danio rerio) muscle. αM-MIIIJ also protected against slowly-reversible block of IACh by α-bungarotoxin (α-BgTX, a snake neurotoxin) and α-conotoxin EI (α-EI, from Conus ermineus another fish hunter) that competitively block nAChRs at the ACh binding site. Furthermore, assessment by fluorescence microscopy showed that αM-MIIIJ inhibited the binding of fluorescently-tagged α-BgTX at neuromuscular junctions of X. laevis, C. auratus, and D. rerio. (Note, we observed that αM-MIIIJ can block adult mouse and human muscle nAChRs exogenously expressed in X. laevis oocytes, but with IC50s ~100-times higher than those of zebrafish nAChRs.) Taken together, these results indicate that αM-MIIIJ inhibits muscle nAChRs and furthermore apparently does so by interfering with the binding of ACh to its receptor. Comparative alignments with homologous sequences identified in other fish hunters revealed that αM-MIIIJ defines a new class of muscle nAChR inhibitors from cone snails.


2004 ◽  
Vol 91 (5) ◽  
pp. 1138-1150 ◽  
Author(s):  
Mark S. Karadsheh ◽  
M. Salman Shah ◽  
Xin Tang ◽  
Robert L. Macdonald ◽  
Jerry A. Stitzel

2004 ◽  
Vol 123 (6) ◽  
pp. 697-708 ◽  
Author(s):  
Paul J. Groot-Kormelink ◽  
Steven D. Broadbent ◽  
James P. Boorman ◽  
Lucia G. Sivilotti

Tandem constructs are increasingly being used to restrict the composition of recombinant multimeric channels. It is therefore important to assess not only whether such approaches give functional channels, but also whether such channels completely incorporate the subunit tandems. We have addressed this question for neuronal nicotinic acetylcholine receptors, using a channel mutation as a reporter for subunit incorporation. We prepared tandem constructs of nicotinic receptors by linking α (α2–α4, α6) and β (β2, β4) subunits by a short linker of eight glutamine residues. Robust functional expression in oocytes was observed for several tandems (β4_α2, β4_α3, β4_α4, and β2_α4) when coexpressed with the corresponding β monomer subunit. All tandems expressed when injected alone, except for β4_α3, which produced functional channels only together with β4 monomer and was chosen for further characterization. These channels produced from β4_α3 tandem constructs plus β4 monomer were identical with receptors expressed from monomer α3 and β4 constructs in acetylcholine sensitivity and in the number of α and β subunits incorporated in the channel gate. However, separately mutating the β subunit in either the monomer or the tandem revealed that tandem-expressed channels are heterogeneous. Only a proportion of these channels contained as expected two copies of β subunits from the tandem and one from the β monomer construct, whereas the rest incorporated two or three β monomers. Such inaccuracies in concatameric receptor assembly would not have been apparent with a standard functional characterization of the receptor. Extensive validation is needed for tandem-expressed receptors in the nicotinic superfamily.


2013 ◽  
Vol 714 (1-3) ◽  
pp. 405-413 ◽  
Author(s):  
Edilson Dantas da Silva Júnior ◽  
Bruno Palmieri de Souza ◽  
Juliano Quintela Dantas Rodrigues ◽  
Afonso Caricati-Neto ◽  
Aron Jurkiewicz ◽  
...  

2020 ◽  
Vol 477 (7) ◽  
pp. 1261-1286 ◽  
Author(s):  
Marie Anne Richard ◽  
Hannah Pallubinsky ◽  
Denis P. Blondin

Brown adipose tissue (BAT) has long been described according to its histological features as a multilocular, lipid-containing tissue, light brown in color, that is also responsive to the cold and found especially in hibernating mammals and human infants. Its presence in both hibernators and human infants, combined with its function as a heat-generating organ, raised many questions about its role in humans. Early characterizations of the tissue in humans focused on its progressive atrophy with age and its apparent importance for cold-exposed workers. However, the use of positron emission tomography (PET) with the glucose tracer [18F]fluorodeoxyglucose ([18F]FDG) made it possible to begin characterizing the possible function of BAT in adult humans, and whether it could play a role in the prevention or treatment of obesity and type 2 diabetes (T2D). This review focuses on the in vivo functional characterization of human BAT, the methodological approaches applied to examine these features and addresses critical gaps that remain in moving the field forward. Specifically, we describe the anatomical and biomolecular features of human BAT, the modalities and applications of non-invasive tools such as PET and magnetic resonance imaging coupled with spectroscopy (MRI/MRS) to study BAT morphology and function in vivo, and finally describe the functional characteristics of human BAT that have only been possible through the development and application of such tools.


Sign in / Sign up

Export Citation Format

Share Document