scholarly journals Key Technologies for Next Generation Thin Film Silicon Solar Cells. Issues Upon Surface and Interface of Microcrystalline Silicon Thin Film as a Solar Cell Material.

Hyomen Kagaku ◽  
2000 ◽  
Vol 21 (5) ◽  
pp. 262-271
Author(s):  
Michio KONDO ◽  
Akihisa MATSUDA
1996 ◽  
Vol 452 ◽  
Author(s):  
H. Keppner ◽  
P. Torres ◽  
J. Meier ◽  
R. Platz ◽  
D. Fischer ◽  
...  

AbstractIn the past, microcrystalline silicon (μc-Si:H) has been successfully used as active semiconductor in entirely μc-Si:H p-i-n solar cells and a new type of tandem solar cell, called the “micromorph” cell, was introduced [1]. Micromorph cells consist of an amorphous silicon top cell and a microcrystalline bottom cell. In the paper a micromorph cell with a stable efficiency of 10.7 % (confirmed by ISE Freiburg) is reported.Among sofar existing crystalline silicon-based solar cell manufacturing techniques, the application of microcrystalline silicon is a new promising way towards implementing thin-film silicon solar cells with a low temperature deposition. Microcrystalline silicon can, indeed, be deposited at temperatures as low as 220°C; hence, the way is here open to use cheap substrates as, e.g. plastic or glass. In the present paper, the development of single and tandem cells containing microcrystalline silicon is reviewed. As stated in previous publications, microcrystalline silicon technique has at present a severe drawback that has yet to be overcome: Its deposition rate for solar-grade material is about 2Å/s; in a more recent case 4.3 Å/s [2] could be obtained. In the present paper, using suitable mixtures of silane, hydrogen and argon, deposition rates of 9.4 Å/s are presented. Thereby the dominating plasma mechanism and the basic properties of resulting layers are described in detail. A first entirely microcrystalline cell deposited at 8.7 Å/s has an efficiency of 3.15%.


2015 ◽  
Vol 1771 ◽  
pp. 97-107
Author(s):  
Xueshi Tan ◽  
Bingxue Mao ◽  
Feng Zhang ◽  
Jingjing Yang

ABSTRACTFor the industrial application of silicon thin film solar cells, the current focus is on how to realize high-efficiency low-cost production process and minimize light-induced degradation effect, thus effectively reducing the balance-of-system (BOS) costs of system integration. In this paper, a brief introduction based on our development and application in this area is presented, highlighting in the achievement of some layers in a-Si:H/μc-Si:H tandem solar cell by optimizing the property of single layers, such as amorphous intrinsic layer, intermediate reflective layer and microcrystalline intrinsic layer. After transferring the process achievement to the industrial production line, we obtained the low-cost thin-film silicon solar cells with high photovoltaic conversion efficiency of 10.2%.


2002 ◽  
Vol 715 ◽  
Author(s):  
Torsten Brammer ◽  
Helmut Stiebig

AbstractAbsorber layers of microcrystalline silicon thin-film solar cells deposited by plasma-enhanced chemical vapor deposition are characterized regarding the recombination lifetime. The characterization is based on a comparison of experimentally determined solar cell characteristics with results from numerical device simulations. Evaluation of the dark reverse saturation current indicates a strong dependence of τ on the hydrogen dilution during the deposition. Close to the transition region to amorphous growth where the highest solar cell efficiencies are observed τ is maximum within the crystalline deposition regime and equals 30 ns.


Sign in / Sign up

Export Citation Format

Share Document