Studying Vaccinia Virus RNA Processing In Vitro

2004 ◽  
pp. 151-167
Author(s):  
Paul D. Gershon
1980 ◽  
Vol 255 (11) ◽  
pp. 5396-5403
Author(s):  
S. Shuman ◽  
E. Spencer ◽  
H. Furneaux ◽  
J. Hurwitz

2002 ◽  
Vol 22 (20) ◽  
pp. 7242-7257 ◽  
Author(s):  
Lubov T. Timchenko ◽  
Polina Iakova ◽  
Alana L. Welm ◽  
Z.-J. Cai ◽  
Nikolai A. Timchenko

ABSTRACT We previously identified an RNA binding protein, CUGBP1, which binds to GCN repeats located within the 5′ region of C/EBPβ mRNAs and regulates translation of C/EBPβ isoforms. To further investigate the role of RNA binding proteins in the posttranscriptional control of C/EBP proteins, we purified additional RNA binding proteins that interact with GC-rich RNAs and that may regulate RNA processing. In HeLa cells, the majority of GC-rich RNA binding proteins are associated with endogenous RNA transcripts. The separation of these proteins from endogenous RNA identified several proteins in addition to CUGBP1 that specifically interact with the GC-rich 5′ region of C/EBPβ mRNA. One of these proteins was purified to homogeneity and was identified as calreticulin (CRT). CRT is a multifunctional protein involved in several biological processes, including interaction with and regulation of rubella virus RNA processing. Our data demonstrate that both CUGBP1 and CRT interact with GCU repeats within myotonin protein kinase and with GCN repeats within C/EBPα and C/EBPβ mRNAs. GCN repeats within these mRNAs form stable SL structures. The interaction of CRT with SL structures of C/EBPβ and C/EBPα mRNAs leads to inhibition of translation of C/EBP proteins in vitro and in vivo. Deletions or mutations abolishing the formation of SL structures within C/EBPα and C/EBPβ mRNAs lead to a failure of CRT to inhibit translation of C/EBP proteins. CRT-dependent inhibition of C/EBPα is sufficient to block the growth-inhibitory activity of C/EBPα. This finding further defines the molecular mechanism for posttranscriptional regulation of the C/EBPα and C/EBPβ proteins.


npj Vaccines ◽  
2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Mauro Di Pilato ◽  
Miguel Palomino-Segura ◽  
Ernesto Mejías-Pérez ◽  
Carmen E. Gómez ◽  
Andrea Rubio-Ponce ◽  
...  

AbstractNeutrophils are innate immune cells involved in the elimination of pathogens and can also induce adaptive immune responses. Nα and Nβ neutrophils have been described with distinct in vitro capacity to generate antigen-specific CD8 T-cell responses. However, how these cell types exert their role in vivo and how manipulation of Nβ/Nα ratio influences vaccine-mediated immune responses are not known. In this study, we find that these neutrophil subtypes show distinct migratory and motility patterns and different ability to interact with CD8 T cells in the spleen following vaccinia virus (VACV) infection. Moreover, after analysis of adhesion, inflammatory, and migration markers, we observe that Nβ neutrophils overexpress the α4β1 integrin compared to Nα. Finally, by inhibiting α4β1 integrin, we increase the Nβ/Nα ratio and enhance CD8 T-cell responses to HIV VACV-delivered antigens. These findings provide significant advancements in the comprehension of neutrophil-based control of adaptive immune system and their relevance in vaccine design.


Sign in / Sign up

Export Citation Format

Share Document