An Overview of Nucleic Acid Chemistry, Structure, and Function

2006 ◽  
pp. 13-24
Author(s):  
William B. Coleman
ChemInform ◽  
2010 ◽  
Vol 22 (16) ◽  
pp. no-no
Author(s):  
Y. B. SHI ◽  
S. E. LIPSON ◽  
D. Y. CHI ◽  
H. P. SPIELMANN ◽  
J. A. MONFORTE ◽  
...  

2019 ◽  
Vol 16 (2) ◽  
Author(s):  
Curtis Madsen ◽  
Angel Goni Moreno ◽  
Zachary Palchick ◽  
Umesh P ◽  
Nicholas Roehner ◽  
...  

AbstractPeople who are engineering biological organisms often find it useful to communicate in diagrams, both about the structure of the nucleic acid sequences that they are engineering and about the functional relationships between sequence features and other molecular species . Some typical practices and conventions have begun to emerge for such diagrams. The Synthetic Biology Open Language Visual (SBOL Visual) has been developed as a standard for organizing and systematizing such conventions in order to produce a coherent language for expressing the structure and function of genetic designs. This document details version 2.1 of SBOL Visual, which builds on the prior SBOL Visual 2.0 standard by expanding diagram syntax to include methods for showing modular structure and mappings between elements of a system, interactions arrows that can split or join (with the glyph at the split or join indicating either superposition or a chemical process), and adding new glyphs for indicating genomic context (e.g., integration into a plasmid or genome) and for stop codons.


Molecules ◽  
2019 ◽  
Vol 24 (17) ◽  
pp. 3074 ◽  
Author(s):  
Sofia Kolesnikova ◽  
Edward A. Curtis

G-quadruplexes are noncanonical nucleic acid structures formed from stacked guanine tetrads. They are frequently used as building blocks and functional elements in fields such as synthetic biology and also thought to play widespread biological roles. G-quadruplexes are often studied as monomers, but can also form a variety of higher-order structures. This increases the structural and functional diversity of G-quadruplexes, and recent evidence suggests that it could also be biologically important. In this review, we describe the types of multimeric topologies adopted by G-quadruplexes and highlight what is known about their sequence requirements. We also summarize the limited information available about potential biological roles of multimeric G-quadruplexes and suggest new approaches that could facilitate future studies of these structures.


2020 ◽  
Vol 21 (22) ◽  
pp. 8774
Author(s):  
Natalia Komarova ◽  
Daria Barkova ◽  
Alexander Kuznetsov

Aptamers are nucleic acid ligands that bind specifically to a target of interest. Aptamers have gained in popularity due to their high potential for different applications in analysis, diagnostics, and therapeutics. The procedure called systematic evolution of ligands by exponential enrichment (SELEX) is used for aptamer isolation from large nucleic acid combinatorial libraries. The huge number of unique sequences implemented in the in vitro evolution in the SELEX process imposes the necessity of performing extensive sequencing of the selected nucleic acid pools. High-throughput sequencing (HTS) meets this demand of SELEX. Analysis of the data obtained from sequencing of the libraries produced during and after aptamer isolation provides an informative basis for precise aptamer identification and for examining the structure and function of nucleic acid ligands. This review discusses the technical aspects and the potential of the integration of HTS with SELEX.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Hasan Baig ◽  
Pedro Fontanarossa ◽  
James McLaughlin ◽  
James Scott-Brown ◽  
Prashant Vaidyanathan ◽  
...  

Abstract People who engineer biological organisms often find it useful to draw diagrams in order to communicate both the structure of the nucleic acid sequences that they are engineering and the functional relationships between sequence features and other molecular species. Some typical practices and conventions have begun to emerge for such diagrams. SBOL Visual aims to organize and systematize such conventions in order to produce a coherent language for expressing the structure and function of genetic designs. This document details version 3.0 of SBOL Visual, a new major revision of the standard. The major difference between SBOL Visual 3 and SBOL Visual 2 is that diagrams and glyphs are defined with respect to the SBOL 3 data model rather than the SBOL 2 data model. A byproduct of this change is that the use of dashed undirected lines for subsystem mappings has been removed, pending future determination on how to represent general SBOL 3 constraints; in the interim, this annotation can still be used as an annotation. Finally, deprecated material has been removed from collection of glyphs: the deprecated “insulator” glyph and “macromolecule” alternative glyphs have been removed, as have the deprecated BioPAX alternatives to SBO terms.


Molecules ◽  
2020 ◽  
Vol 25 (7) ◽  
pp. 1526
Author(s):  
Katherine Seley-Radtke

For decades, nucleosides and nucleotides have formed the cornerstone of antiviral, antiparasitic and anticancer therapeutics and have been used as tools in exploring nucleic acid structure and function [...]


Sign in / Sign up

Export Citation Format

Share Document