Voronoi analysis uncovers relationship between mosaics of normally placed and displaced amacrine cells in the thraira retina

2007 ◽  
Vol 5 (1) ◽  
pp. 59-77 ◽  
Author(s):  
Luciano Da Fontoura Costa ◽  
Daniela Maria Oliveira Bonci ◽  
Cézar Akiyoshi Saito ◽  
Fernando Allan De Farias Rocha ◽  
Luiz Carlos De Lima Silveira ◽  
...  
1993 ◽  
Vol 10 (5) ◽  
pp. 887-897 ◽  
Author(s):  
L. C. L. Silveira ◽  
V. H. Perry ◽  
E. S. Yamada

AbstractThe distribution of ganglion cells and displaced amacrine cells was determined in whole-mounted Aotus retinae. In contrast to diurnal simians, Aotus has only a rudimentary fovea. Ganglion cell density decreases towards the periphery at approximately the same rate along all meridians, but is 1.2–1.8 times higher in the nasal periphery when compared to temporal region at the same eccentricities. The total number of ganglion cells varied from 421,500 to 508,700. Ganglion cell density peaked at 15,000/mm2 at 0.25 mm dorsal to the fovea. The displaced amacrine cells have a shallow density gradient, their peak density in the central region is about 1500–2000/mm2 and their total number varied from 315,900 to 482,800. Comparison between ganglion cell density and areal cortical magnification factor for the primary visual cortex, area 17, shows that there is not a simple proportional representation of the ganglion cell distribution. There is an overrepresentation of the central 10 deg of the visual field in the visual cortex. The present results for Aotus and the results of a similar analysis of data from other primates indicate that the overrepresentation of the central visual field is a general feature of the visual system of primates.


Science ◽  
1980 ◽  
Vol 210 (4468) ◽  
pp. 435-437 ◽  
Author(s):  
S. Hayden ◽  
J. Mills ◽  
R. Masland

2004 ◽  
Vol 21 (2) ◽  
pp. 135-144 ◽  
Author(s):  
SALLY W. ABOELELA ◽  
DAVID W. ROBINSON

The ganglion cell layer (GCL) of the mammalian retina contains a large number of neurons called displaced amacrine cells (DACs) that do not project to the optic nerve. However, with the exception of the rabbit starburst amacrine cell little is known regarding the function of this large population due to the difficulty experienced in making physiological recordings from these neurons. We have overcome these difficulties and have used whole-cell patch-clamp techniques to examine the intrinsic membrane properties of DACs in the ferret retina. Our results indicate a large degree of diversity in their intrinsic membrane properties. In response to maintained depolarizing current injection, DACs responded with graded depolarization or by eliciting either transient or sustained bursts of spiking activity. At the resting membrane potential, 10% of the DACs generated spontaneous spikes in either an apparently random manner or at the peak of intrinsic waves of depolarization. The resting membrane activity of the remaining DACs recorded could be classified into three groups that were quiescent (28%), had robust uncorrelated synaptic activity (30%), or underwent slow waves of depolarization (42%). Diversity was also revealed in the membrane currents recorded in voltage-clamp where some DACs were quiescent (19%), or exhibited robust nonrhythmic synaptic events (42%). The remaining DACs exhibited waves of oscillatory activity (39%), characterized by either rhythmic bursts of synaptic events (17%) or slow inward currents (22%). Bath application of 50 μM biccuculine or 150 μM picrotoxin had no effect on the waves of activity, however, the gap junction blocker, carbenoxolone (100 μm), blocked both oscillatory patterns. By including Lucifer yellow and biocytin in the recording pipette, it was possible to determine the morphology of recorded neurons and group them based on dendritic extent as small-, medium-, or large-field DACs. There were few relationships between these morphologically defined groups and their intrinsic membrane properties. The present study provides the first in-depth examination of the intrinsic membrane properties of DACs in the ferret retina and provides new insights into the potential roles these neurons play in the processing of visual information in the mammalian retina.


1990 ◽  
Vol 4 (3) ◽  
pp. 217-223 ◽  
Author(s):  
Ngoh Ngoh Tung ◽  
Ian G. Morgan ◽  
David Ehrlich

AbstractThe present study examines the differential effects of three excitotoxins, kainic acid (KA), N-methyl-D-aspartate (NMDA), and α-amino-2,3-amino-2,3-dihydro-5- methyl-3-oxo-4- isoxazolepropanoic acid (AMPA) on neurons within the genglion cell layer (GCL) of the chick retina. Two-day-old chicks were given a single, 5 μl, intravitreal injection of KA, NMDA, or AMPA at a range of doses. Following treatment with 40 nmol KA, there was a 21% loss of neurons in the GCL. At 200 nmol KA, the loss increased to 46%. Exposure to KA eliminated mainly small neurons of soma area 5–15μm2, and medium-sized ganglion cells of soma area 15–25μm2. Large ganglion cells (>25μ,2) remained unaffected. The vast majority of small cells were probably displaced amarcrine cells. At a does of 3000 nmol NMDA, no further loss of cells was evident. Exposure to 200 nmol AMPA resulted in a 30% loss of large and some medium-sized ganglion cells. In a further series of experiments, exposure to excitotoxin was followed by a retinal scratch, which eliminated retinal ganglion cells within the axotomized region. The results indicate that only a small proportion of displaced amacrine cells are destroyed by NMDA and AMPA, whereas virtually all displaced amarine cells are sensitive to KA. The findings of this study indicate the existence of subclasses of ganglion cells with specificity towards different types of excitatory amino acids (EAA).


2009 ◽  
Vol 587 (15) ◽  
pp. 3831-3849 ◽  
Author(s):  
Sriparna Majumdar ◽  
Jan Weiss ◽  
Heinz Wässle

1987 ◽  
Vol 27 (7) ◽  
pp. 1071-1076 ◽  
Author(s):  
Rafael Linden ◽  
Carlos Eduardo L. Esbérard

1999 ◽  
Vol 16 (3) ◽  
pp. 475-481 ◽  
Author(s):  
HAI-BIAO LI ◽  
KWOK-FAI SO ◽  
WAH CHEUK

Light-microscopic immunocytochemistry was utilized to localize the different populations of substance P-immunoreactive (SP-IR) neurons in the hamster retina. Based on observation of 2505 SP-IR neurons in transverse sections, 34% were amacrine cells whose pear-shaped or round cell bodies (7–8 μm) were situated in the inner half of the inner nuclear layer (INL) or in the inner plexiform layer (IPL), while 66% of SP-IR somata (6–20 μm) were located in the ganglion cell layer (GCL) which were interpreted to be displaced amacrine cells and retinal ganglion cells (RGCs). At least three types of SP-IR amacrine cells were identified. The SP-IR processes were distributed in strata 1, 3, and 5 with the densest plexus in stratum 5 of the inner plexiform layer. In the wholemounted retina, the SP-IR cells were found to be distributed throughout the entire retina and their mean number was estimated to be 4224 ± 76. Two experiments were performed to clarify whether any of the SP-IR neurons in the GCL were RGCs. The first experiment demonstrated the presence of SP-IR RGCs by retrogradely labeling the RGCs and subsequently staining the SP-IR cells in the retina using immunocytochemistry. The second experiment identified SP-IR central projections of RGCs to the contralateral dorsal lateral geniculate nucleus. This projection disappeared following removal of the contralateral eye. The number of SP-IR RGCs was estimated following optic nerve section. At 2 months after sectioning the optic nerve, the total number of SP-IR neurons in the GCL reduced from 4224 ± 76 to a mean of 1192 ± 139. Assuming that all SP-IR neurons in the GCL which disappeared after nerve section were RGCs, the number of SP-IR RGCs was estimated to be 3032, representing 3–4% of the total RGCs. In summary, findings of the present study provide evidence for the existence of SP-IR RGCs in the hamster retina.


1995 ◽  
Vol 12 (4) ◽  
pp. 785-792 ◽  
Author(s):  
Mohamed Bennis ◽  
Claudine Versaux-Botteri

AbstractNeurons containing catecholamine, indoleamine, and gamma-aminobutyric acid (GABA) were identified by immunohistochemistry in the chameleon retina. Tyrosine hydroxylase (TH) and serotonin (5HT) were observed mostly in two subtypes of orthotopic amacrine cells differing in their soma size and process distribution within the IPL. Some labelled cells were displaced either to the IPL (5HT) or to the GCL (TH and 5HT). A multiplicity of retinal cell types contained GABA including cones, horizontal, amacrine, and ganglion cells. Our results confirmed those obtained in the retinas of other lizards except for the presence of interstitial and displaced amacrine cells containing TH or 5HT of which this is the first report.


Sign in / Sign up

Export Citation Format

Share Document