scholarly journals Hari metalikoetan eta arku elektrikoan oinarritutako fabrikazio-gehigarriko WAAM teknologiaren oinarriak eta aplikazioak

Author(s):  
Eider Aldalur ◽  
Asier Panfilo ◽  
Alfredo Súarez ◽  
Jone M. Ugartemendia

Fabrikazio-gehigarria geruzaz-geruza piezak eratzean oinarritzen den produkzio kontzeptu berria da. Fabrikazio-gehigarriaren barneko teknikek duten izaera dela eta, orain artean fabrikazio-teknika tradizionalek inposatutako diseinu mugak gainditzea ahalbidetzen dute. Material mota anitzetan lan egin dezaketen arren, lan honetan material metalikoetan oinarritutako fabrikazio-gehigarriko teknikak azalduko dira. Teknika hauek hiru multzo nagusitan sailka daitezke: Hauts-ohearen fusioa (Powder Bed Fusion, PBF), Hauts elikatzedun deposizioa (Powder Feed Systems, PFS) eta Hari elikatzedun deposizioa (Wire Feed Systems, WFS). Hauen artetik, WFS motaren barnean sailkatzen den arku eta hari bidezko fabrikazio gehigarrian (ingelesez, Wire Arc Additive Manufacturing (WAAM) bezala ezaguna) arreta berezia ezarriko da, erakusten dituen abantailak direla eta. Horien artean esanguratsuena, eskaintzen duen materialaren ezarpen-tasa altua da, tamaina handiko piezen fabrikazioa posible bihurtuz. Gainera, fabrikazio-teknika tradizionalekin alderatuz erabiltzen den material kantitatea murrizten du eta beraz, materialaren erabilera efizientzia altua lortzen da, amaierako piezatik gertu dauden aurreformak lortuz ondoren mekanizatu beharko direnak. Azkenik, WAAM teknologiaren bidez, soldagarria den edozein materialetan fabrika daitezke piezak, materiala hari metaliko formatuan sartzen delarik prozesuan. Hala, kilogramoko materialaren prezioa hari formatuan, zenbait fabrikazio-gehigarriko teknikak erabiltzen duten hauts formatuan baino askoz ere merkeagoa da. Gainera, lan honetan, zenbait aplikazio kasu ere azalduko dira aplikazio eremu bakoitzeko (fabrikazio zuzena, ez-zuzena eta konponketak) adibide bat azalduz.

2020 ◽  
Vol 321 ◽  
pp. 03002
Author(s):  
A. Ayed ◽  
G. Bras ◽  
H. Bernard ◽  
P. Michaud ◽  
Y. Balcaen ◽  
...  

Arc-wire or laser-wire additive manufacturing seems promising because it allows large parts to be produced with significant deposition rates (ten times higher than powder bed additive manufacturing), for a lower investment cost. These additive manufacturing techniques are also very interesting for the construction or the repair of parts. A versatile 3D printing device using a Wire Arc Additive Manufacturing (WAAM) station or laser device Wire Laser Additive Manufacturing (WLAM) for melting a filler wire is developed to repair and build large titanium parts. The final objectives of the study are to optimize the process parameters to control the dimensional stability, the metallurgical and mechanical properties of the produced parts. In this paper, an experimental study is carried out to determine the first order process parameter ranges (synergic law, laser power, wire feed speed, travel speed) appropriate for these two techniques, for repair or construction parts on Ti-6 Al-4V.


2021 ◽  
Vol 194 ◽  
pp. 110415
Author(s):  
Vera E. Küng ◽  
Robert Scherr ◽  
Matthias Markl ◽  
Carolin Körner

2021 ◽  
Vol 1 ◽  
pp. 1657-1666
Author(s):  
Joaquin Montero ◽  
Sebastian Weber ◽  
Christoph Petroll ◽  
Stefan Brenner ◽  
Matthias Bleckmann ◽  
...  

AbstractCommercially available metal Laser Powder Bed Fusion (L-PBF) systems are steadily evolving. Thus, design limitations narrow and the diversity of achievable geometries widens. This progress leads researchers to create innovative benchmarks to understand the new system capabilities. Thereby, designers can update their knowledge base in design for additive manufacturing (DfAM). To date, there are plenty of geometrical benchmarks that seek to develop generic test artefacts. Still, they are often complex to measure, and the information they deliver may not be relevant to some designers. This article proposes a geometrical benchmarking approach for metal L-PBF systems based on the designer needs. Furthermore, Geometric Dimensioning and Tolerancing (GD&T) characteristics enhance the approach. A practical use-case is presented, consisting of developing, manufacturing, and measuring a meaningful and straightforward geometric test artefact. Moreover, optical measuring systems are used to create a tailored uncertainty map for benchmarking two different L-PBF systems.


Author(s):  
Arash Soltani-Tehrani ◽  
Rakish Shrestha ◽  
Nam Phan ◽  
Mohsen Seifi ◽  
Nima Shamsaei

Sign in / Sign up

Export Citation Format

Share Document