scholarly journals Structure, regeneration and growth of Scots pine (Pinus sylvestris L.) stands with respect to changing climate and environmental pollution

Silva Fennica ◽  
2016 ◽  
Vol 50 (4) ◽  
Author(s):  
Stanislav Vacek ◽  
Zdeněk Vacek ◽  
Lukáš Bílek ◽  
Jaroslav Simon ◽  
Jiří Remeš ◽  
...  
Author(s):  
Nina F. Kuznetsova ◽  
◽  
Elena S. Klushevskaya ◽  
Elena Yu. Amineva

Forest steppe of the Central Chernozem Region (CCR) of Russia belongs to the zone of highly productive pine forests. In 2015, for the first time a partial destabilization of Scots pine (Pinus sylvestris L.) was recorded within the territory of the CCR. It affected the population, organism and cellular levels of Scots pine (Pinus sylvestris L.). The destabilization was caused by the 8-year heatwave of 2007–2014 followed by a sharp drop in the water table and four severe droughts (2007, 2010, 2012, and 2014). The analysis was carried out on two sites of pine forest plantations growing in the environmentally sound region: the Stupino test site (Voronezh region, typical plantation for the CCR) and the Usman site (Lipetsk region, lands with elevated groundwater level). The results of morphological, cytogenetic and biochemical studies of model trees of the Stupino test site during the following periods are presented: 4 optimal years in terms of weather conditions, 2014 drought year and 2015 destabilization year. It was found that prolonged hydrothermal stress resulted in the transition of pine from the basic equilibrium state to a slightly nonequilibrium state. The trigger mechanism for changing their vital state was a severe autumn soil drought in 2014, after which the plants became weakened right before winter. A decrease in cone bioproductivity by the traits of seed fullness and the total number of seeds per cone, a change in population sampling structure, an increase in the number of mitosis pathologies, and an increase in proline content in needles were observed despite optimal weather conditions in 2015. The recovery of species was studied for three subsequent optimal years on the example of the Stupino and Usman populations. Experimental data indicate that the processes of vital state normalization involve profound changes in metabolism and require certain energy expenditures. It took the Stupino population longer to return to the regional norm, which indicates a different depth of destabilization of the tree genetic material of the studied populations. For citation: Kuznetsova N.F., Klushevskaya E.S, Amineva E.Yu. Highly Productive Pine Forests in a Changing Climate. Lesnoy Zhurnal [Russian Forestry Journal], 2021, no. 6, pp. 9–23. DOI: 10.37482/0536-1036-2021-6-9-23


Wood Research ◽  
2021 ◽  
Vol 66 (2) ◽  
pp. 203-210
Author(s):  
Donata Krutul ◽  
Andrzej Radomski ◽  
Andrzej Antczak ◽  
Michał Drożdżek ◽  
Teresa Kłosińska ◽  
...  

The pine stems were cut from three different polluted environments – Ist trees degradation degree (weak pollution), IInd trees degradation degree (strong pollution) and IIIrd trees degradation degree (connected with very strong pollution). On the basis of obtained results it was stated that environmental pollution caused changes in late wood participation, as well as distribution of cellulose on the stem cross- and longitudinal section. It also changed cellulose content in bark from the butt-end section, which was about 26% regardless the degradation degree. The environmental pollution caused also an increase of viscometric average polymerization degree of cellulose in heartwood in relation to heartwood adjacent sapwood and sapwood from butt-end section. Regardless the degradation degree, cellulose polymerization degree in heartwood adjacent sapwood from the middle part of the stem was higher in comparison to sapwood and heartwood. Moreover, the environmental pollution caused the increase of viscometric average polymerization degree of cellulose in bark. The polymerization degree of cellulose in bark from the butt-end section of IIIrd degradation degree stems was 22% and 23% higher in comparison to the Ist and IInd degradation degree.


Sign in / Sign up

Export Citation Format

Share Document