Determination of some compressive properties of human enamel and dentin

1958 ◽  
Vol 57 (4) ◽  
pp. 487-495 ◽  
Author(s):  
John W. Stanford ◽  
G.C. Paffenbarger ◽  
John W. Kumpula ◽  
W.T. Sweeney
1992 ◽  
Vol 71 (3_suppl) ◽  
pp. 913-919 ◽  
Author(s):  
J.R. Mellberg

Hard-tissue substrates include primarily human and bovine enamel and human dentin. They have been used for in situ studies in a natural or sound condition, as well as flattened or containing an in vitro-formed caries-like lesion. Human enamel and dentin are generally the substrates of choice for studies of coronal and root-surface caries, respectively, but bovine enamel appears to offer a suitable alternative for many studies of enamel caries. Substrates with caries-like lesions will respond more rapidly to changes in the intra-oral mineral equilibrium and will allow both demineralization and remineralization to be determined. Findings from some studies suggest that caries-like lesions may respond somewhat differently, depending upon the degree of mineralization of the surface layer. Because in vitro findings with dentin show it to be significantly more soluble in acid than enamel, results from a study that used dentin may not be directly applicable to enamel. Both enamel and dentin substrates can be used in thin-section models. Hard-tissue substrates can also differ, depending upon their intra-oral location. Locations that result in the accumulation of plaque will behave differently from those that are plaque-free. So that plaque would accumulate, substrates have been placed approximally, beneath a fabric or steel mesh, in a protected trough, beneath a metal band or within a depression on the buccal surface. For studies requiring a determination of both demineralization and remineralization, human enamel or dentin containing a surface-softened caries-like lesion and covered with a uniform natural plaque are the substrates of choice.


2013 ◽  
Vol 2013 (0) ◽  
pp. _OS0704-1_-_OS0704-2_
Author(s):  
Masahiro NISHIDA ◽  
Yoshitaka ITO ◽  
Tesuo TAKAYAMA ◽  
Mitsugu TODO ◽  
Gustaf GUSTAFSSON ◽  
...  

2009 ◽  
Vol 25 (11) ◽  
pp. 1403-1410 ◽  
Author(s):  
Siang Fung Ang ◽  
Torben Scholz ◽  
Arndt Klocke ◽  
Gerold A. Schneider
Keyword(s):  

2000 ◽  
Vol 123 (1) ◽  
pp. 47-51 ◽  
Author(s):  
Mark E. Zobitz ◽  
Zong-Ping Luo ◽  
Kai-Nan An

A methodology was developed for determining the compressive properties of the supraspinatus tendon, based on finite element principles. Simplified three-dimensional models were created based on anatomical thickness measurements of unloaded supraspinatus tendons over 15 points. The tendon material was characterized as a composite structure of longitudinally arranged collagen fibers within an extrafibrillar matrix. The matrix was formulated as a hyperelastic material described by the Ogden form of the strain energy potential. The hyperelastic material parameters were parametrically manipulated until the analytical load-displacement results were similar to the results obtained from indentation testing. In the geometrically averaged tendon, the average ratio of experimental to theoretical maximum indentation displacement was 1.00 (SD: 0.01). The average normalization of residuals was 2.1g (SD: 0.9g). Therefore, the compressive material properties of the supraspinatus tendon extrafibrillar matrix were adequately derived with a first-order hyperelastic formulation. The initial compressive elastic modulus ranged from 0.024 to 0.090 MPa over the tendon surface and increased nonlinearly with additional compression. Using these material properties, the stresses induced during acromional impingement can be analyzed.


Sign in / Sign up

Export Citation Format

Share Document