Status Report: Dental Visible Light-Curing Units

1982 ◽  
Vol 104 (4) ◽  
pp. 505 ◽  
2018 ◽  
Vol 2018 ◽  
pp. 1-8 ◽  
Author(s):  
Jy-Jiunn Tzeng ◽  
Yi-Ting Hsiao ◽  
Yun-Ching Wu ◽  
Hsuan Chen ◽  
Shyh-Yuan Lee ◽  
...  

Polycaprolactone (PCL) is drawing increasing attention in the field of medical 3D printing and tissue engineering because of its biodegradability. This study developed polycaprolactone prepolymers that can be cured using visible light. Three PCL acrylates were synthesized: polycaprolactone-530 diacrylate (PCL530DA), glycerol-3 caprolactone triacrylate (Glycerol-3CL-TA), and glycerol-6 caprolactone triacrylate (Glycerol-6CL-TA). PCL530DA has two acrylates, whereas Glycerol-3CL-TA and Glycerol-6CL-TA have three acrylates. The Fourier transform infrared and nuclear magnetic resonance spectra suggested successful synthesis of all PCL acrylates. All are liquid at room temperature and can be photopolymerized into a transparent solid after exposure to 470 nm blue LED light using 1% camphorquinone as photoinitiator and 2% dimethylaminoethyl methacrylate as coinitiator. The degree of conversion for all PCL acrylates can reach more than 80% after 1 min of curing. The compressive modulus of PCL530DA, Glycerol-3CL-TA, and Glycerol-6CL-TA is 65.7±12.7, 80.9±6.1, and 32.1±4.1 MPa, respectively, and their compressive strength is 5.3±0.29, 8.3±0.18, and 3.0±0.53 MPa, respectively. Thus, all PCL acrylates synthesized in this study can be photopolymerized and because of their solid structure and low viscosity, they are applicable to soft tissue engineering and medical 3D printing.


1991 ◽  
Vol 75 (1) ◽  
pp. 91-96 ◽  
Author(s):  
Ricardo Segal ◽  
Moufid Alsawaf ◽  
Ali Tabatabai ◽  
Reisuke Saito ◽  
Eduardo D. Segal ◽  
...  

✓ The technology of visible light-curing resin has recently been developed for use in removable prosthodontics. A quartz halogen lamp producing a 400- to 500-nanometer wave-length spectrum of visible light is used to polymerize high-molecular-weight acrylic resin monomers. While several in vitro and in vivo studies of visible light-curing resin are found in the dental literature, no studies have yet been performed to evaluate it as an intracorporeal implant in surgery. The authors have designed a rat model of microcervical corpectomy to assess vertebral body replacement with visible light-curing resin in comparison to conventional autopolymerizing methyl methacrylate. Spinal cord function tests, spinal-implant stability assessments, and histological evaluations were made in a total of 41 rats at 2, 4, or 6 months postimplant. No animal developed a neurological deficit or radiographic instability, and at sacrifice there was no evidence of implant fracture-extrusion. In addition, there were no signs of adverse reaction in the surrounding tissues. Morphological investigation of the resin/bone interface at 6 months revealed very good implant anchorage. Visible light-curing resin was found to be far superior to methyl methacrylate for construction of spinal implants. Its waxy consistency makes it easy to handle. It remains pliable until light is applied, allowing adjustments in shape for a well-fitted implant without time constraints. Applied in layers, adjustments can be made even after polymerization of a previous layer. This new implantable resin will allow safer, immediate stabilization in patients with neoplastic destruction of the spine, and may also be advantageous for other neurosurgical applications, such as cranioplasty.


RSC Advances ◽  
2015 ◽  
Vol 5 (42) ◽  
pp. 33171-33176 ◽  
Author(s):  
Yu Chen ◽  
Xiaoqin Jia ◽  
Mengqiang Wang ◽  
Tao Wang

Diaryliodonium and ferrocenium salts undergo photo-electron transfer (PET) to initiate photopolymerizations under a halogen lamp.


1987 ◽  
Vol 29 (1) ◽  
pp. 35-41 ◽  
Author(s):  
Keiichi ISHIGAMI ◽  
Tatsuya MASHIO ◽  
Junji TSUKUI ◽  
Takao UMI ◽  
Moritaka MAEDA ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document