scholarly journals Positive solutions of some higher order nonlocal boundary value problems

Author(s):  
Jeff Webb
2010 ◽  
Vol 2010 ◽  
pp. 1-15 ◽  
Author(s):  
Mujeeb Ur Rehman ◽  
Rahmat Ali Khan

We study existence of positive solutions to nonlinear higher-order nonlocal boundary value problems corresponding to fractional differential equation of the type , , . , , , , where, , , , the boundary parameters and is the Caputo fractional derivative. We use the classical tools from functional analysis to obtain sufficient conditions for the existence and uniqueness of positive solutions to the boundary value problems. We also obtain conditions for the nonexistence of positive solutions to the problem. We include examples to show the applicability of our results.


2020 ◽  
Vol 13 (1) ◽  
pp. 33-47
Author(s):  
Samuel Iyase ◽  
Abiodun Opanuga

This paper investigates the solvability of a class of higher order nonlocal boundaryvalue problems of the formu(n)(t) = g(t, u(t), u0(t)· · · u(n−1)(t)), a.e. t ∈ (0, ∞)subject to the boundary conditionsu(n−1)(0) = (n − 1)!ξn−1u(ξ), u(i)(0) = 0, i = 1, 2, . . . , n − 2,u(n−1)(∞) = Z ξ0u(n−1)(s)dA(s)where ξ > 0, g : [0, ∞) × <n −→ < is a Caratheodory’s function,A : [0, ξ] −→ [0, 1) is a non-decreasing function with A(0) = 0, A(ξ) = 1. The differential operatoris a Fredholm map of index zero and non-invertible. We shall employ coicidence degree argumentsand construct suitable operators to establish existence of solutions for the above higher ordernonlocal boundary value problems at resonance.


Sign in / Sign up

Export Citation Format

Share Document