scholarly journals Sign-changing solutions for a Schrödinger–Kirchhoff–Poisson system with 4-sublinear growth nonlinearity

Author(s):  
Shubin Yu ◽  
Ziheng Zhang ◽  
Rong Yuan

In this paper we consider the following Schrödinger–Kirchhoff–Poisson-type system { − ( a + b ∫ Ω | ∇ u | 2 d x ) Δ u + λ ϕ u = Q ( x ) | u | p − 2 u in   Ω , − Δ ϕ = u 2 in   Ω , u = ϕ = 0 on   ∂ Ω , where Ω is a bounded smooth domain of R 3 , a > 0 , b ≥ 0 are constants and λ is a positive parameter. Under suitable conditions on Q ( x ) and combining the method of invariant sets of descending flow, we establish the existence and multiplicity of sign-changing solutions to this problem for the case that 2 < p < 4 as λ sufficient small. Furthermore, for λ = 1 and the above assumptions on Q ( x ) , we obtain the same conclusions with 2 < p < 12 5 .

2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Xingping Li ◽  
Xiumei He

We study the following Kirchhoff-type equations-a+b∫Ω∇u2dxΔu+Vxu=fx,u, inΩ,u=0, in∂Ω, whereΩis a bounded smooth domain ofRN  (N=1,2,3),a>0,b≥0,f∈C(Ω¯×R,R), andV∈C(Ω¯,R). Under some suitable conditions, we prove that the equation has three solutions of mountain pass type: one positive, one negative, and sign-changing. Furthermore, iffis odd with respect to its second variable, this problem has infinitely many sign-changing solutions.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Zhongyi Zhang ◽  
Yueqiang Song

AbstractIn the present work we are concerned with the existence and multiplicity of solutions for the following new Kirchhoff problem involving the p-Laplace operator: $$ \textstyle\begin{cases} - (a-b\int _{\Omega } \vert \nabla u \vert ^{p}\,dx ) \Delta _{p}u = \lambda \vert u \vert ^{q-2}u + g(x, u), & x \in \Omega , \\ u = 0, & x \in \partial \Omega , \end{cases} $$ { − ( a − b ∫ Ω | ∇ u | p d x ) Δ p u = λ | u | q − 2 u + g ( x , u ) , x ∈ Ω , u = 0 , x ∈ ∂ Ω , where $a, b > 0$ a , b > 0 , $\Delta _{p} u := \operatorname{div}(|\nabla u|^{p-2}\nabla u)$ Δ p u : = div ( | ∇ u | p − 2 ∇ u ) is the p-Laplace operator, $1 < p < N$ 1 < p < N , $p < q < p^{\ast }:=(Np)/(N-p)$ p < q < p ∗ : = ( N p ) / ( N − p ) , $\Omega \subset \mathbb{R}^{N}$ Ω ⊂ R N ($N \geq 3$ N ≥ 3 ) is a bounded smooth domain. Under suitable conditions on g, we show the existence and multiplicity of solutions in the case of high perturbations (λ large enough). The novelty of our work is the appearance of new nonlocal terms which present interesting difficulties.


2004 ◽  
Vol 06 (02) ◽  
pp. 245-258 ◽  
Author(s):  
THOMAS BARTSCH ◽  
ZHAOLI LIU

We consider the eigenvalue problem [Formula: see text] where Ω⊂ℝN is a bounded smooth domain and Δpu denotes the p-Laplacian, 1<p<+∞; λ>0 is a parameter. The nonlinearity f is required to have an oscillatory behaviour. We prove the existence of multiple positive, multiple negative, and in particular, of multiple sign changing solutions depending on λ.


2019 ◽  
Vol 21 (07) ◽  
pp. 1850052 ◽  
Author(s):  
Yessine Dammak ◽  
Rabeh Ghoudi

This paper is concerned with the following nonlinear elliptic problem involving nearly critical exponent [Formula: see text]: [Formula: see text] in [Formula: see text], [Formula: see text] on [Formula: see text], where [Formula: see text] is a bounded smooth domain in [Formula: see text], [Formula: see text], [Formula: see text] is a small positive parameter. As [Formula: see text] goes to zero, we construct a solution with the shape of a tower of sign changing bubbles.


2018 ◽  
Vol 2019 (19) ◽  
pp. 5953-5974
Author(s):  
Mónica Clapp ◽  
Jorge Faya ◽  
Filomena Pacella

Abstract Let Ω be a bounded smooth domain in $\mathbb {R}^{N}$ which contains a ball of radius R centered at the origin, N ≥ 3. Under suitable symmetry assumptions, for each δ ∈ (0, R), we establish the existence of a sequence (um, δ) of nodal solutions to the critical problem $$\begin{align*}-\Delta u=|u|^{2^{\ast}-2}u\text{ in }\Omega_{\delta}:=\{x\in\Omega :\left\vert x\right\vert>\delta\},\quad u=0\text{ on }\partial \Omega_{\delta},\nonumber\end{align*}$$ where $2^{\ast }:=\frac {2N}{N-2}$ is the critical Sobolev exponent. We show that, if Ω is strictly star-shaped then, for each $m\in \mathbb {N},$ the solutions um, δ concentrate and blow up at 0, as $\delta \rightarrow 0,$ and their limit profile is a tower of nodal bubbles, that is, it is a sum of rescaled nonradial sign-changing solutions to the limit problem $$\begin{align*}-\Delta u=|u|^{2^{\ast}-2}u, \quad u\in D^{1,2}(\mathbb{R}^{N}),\nonumber\end{align*}$$ centered at the origin.


2012 ◽  
Vol 2012 ◽  
pp. 1-10
Author(s):  
Guowei Dai ◽  
Chunfeng Yang

We prove existence and multiplicity of positive solutions for semipositone problems involvingp-Laplacian in a bounded smooth domain ofℝNunder the cases of sublinear and superlinear nonlinearities term.


Author(s):  
Zongming Guo ◽  
Zhongyuan Liu

We continue to study the nonlinear fourth-order problem TΔu – DΔ2u = λ/(L + u)2, –L < u < 0 in Ω, u = 0, Δu = 0 on ∂Ω, where Ω ⊂ ℝN is a bounded smooth domain and λ > 0 is a parameter. When N = 2 and Ω is a convex domain, we know that there is λc > 0 such that for λ ∊ (0, λc) the problem possesses at least two regular solutions. We will see that the convexity assumption on Ω can be removed, i.e. the main results are still true for a general bounded smooth domain Ω. The main technique in the proofs of this paper is the blow-up argument, and the main difficulty is the analysis of touch-down behaviour.


Author(s):  
Amandine Aftalion ◽  
Manuel del Pino ◽  
René Letelier

We consider the problem Δu = λf(u) in Ω, u(x) tends to +∞ as x approaches ∂Ω. Here, Ω is a bounded smooth domain in RN, N ≥ 1 and λ is a positive parameter. In this paper, we are interested in analysing the role of the sign changes of the function f in the number of solutions of this problem. As a consequence of our main result, we find that if Ω is star-shaped and f behaves like f(u) = u(u−a)(u−1) with ½ < a < 1, then there is a solution bigger than 1 for all λ and there exists λ0 > 0 such that, for λ < λ0, there is no positive solution that crosses 1 and, for λ > λ0, at least two solutions that cross 1. The proof is based on a priori estimates, the construction of barriers and topological-degree arguments.


2021 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Ignacio Guerra

<p style='text-indent:20px;'>We consider the following semilinear problem with a gradient term in the nonlinearity</p><p style='text-indent:20px;'><disp-formula> <label/> <tex-math id="FE1"> \begin{document}$ \begin{align*} -\Delta u = \lambda \frac{(1+|\nabla u|^q)}{(1-u)^p}\quad\text{in}\quad\Omega,\quad u&gt;0\quad \text{in}\quad \Omega, \quad u = 0\quad\text{on}\quad \partial \Omega. \end{align*} $\end{document} </tex-math></disp-formula></p><p style='text-indent:20px;'>where <inline-formula><tex-math id="M1">\begin{document}$ \lambda,p,q&gt;0 $\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id="M2">\begin{document}$ \Omega $\end{document}</tex-math></inline-formula> be a bounded, smooth domain in <inline-formula><tex-math id="M3">\begin{document}$ {\mathbb R}^N $\end{document}</tex-math></inline-formula>. We prove that when <inline-formula><tex-math id="M4">\begin{document}$ \Omega $\end{document}</tex-math></inline-formula> is a unit ball and <inline-formula><tex-math id="M5">\begin{document}$ p = 1 $\end{document}</tex-math></inline-formula> for <inline-formula><tex-math id="M6">\begin{document}$ q\in (0,q^*(N)) $\end{document}</tex-math></inline-formula> with <inline-formula><tex-math id="M7">\begin{document}$ q^*(N)\in (1,2) $\end{document}</tex-math></inline-formula>, we have infinitely many radial solutions for <inline-formula><tex-math id="M8">\begin{document}$ 2\leq N&lt;2\frac{6-q+2\sqrt{8-2q}}{(2-q)^2}+1 $\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id="M9">\begin{document}$ \lambda = \tilde \lambda $\end{document}</tex-math></inline-formula>. On the other hand, for <inline-formula><tex-math id="M10">\begin{document}$ N&gt;2\frac{6-q+2\sqrt{8-2q}}{(2-q)^2}+1 $\end{document}</tex-math></inline-formula> there exists a unique radial solution for <inline-formula><tex-math id="M11">\begin{document}$ 0&lt;\lambda&lt;\tilde \lambda $\end{document}</tex-math></inline-formula>.</p>


Author(s):  
Zhijun Zhang

This paper is mainly concerned with the global asymptotic behaviour of the unique solution to a class of singular Dirichlet problems − Δu = b(x)g(u), u > 0, x ∈ Ω, u|∂Ω = 0, where Ω is a bounded smooth domain in ℝ n , g ∈ C1(0, ∞) is positive and decreasing in (0, ∞) with $\lim _{s\rightarrow 0^+}g(s)=\infty$ , b ∈ Cα(Ω) for some α ∈ (0, 1), which is positive in Ω, but may vanish or blow up on the boundary properly. Moreover, we reveal the asymptotic behaviour of such a solution when the parameters on b tend to the corresponding critical values.


Sign in / Sign up

Export Citation Format

Share Document