MULTIPLE SIGN CHANGING SOLUTIONS OF A QUASILINEAR ELLIPTIC EIGENVALUE PROBLEM INVOLVING THE p-LAPLACIAN

2004 ◽  
Vol 06 (02) ◽  
pp. 245-258 ◽  
Author(s):  
THOMAS BARTSCH ◽  
ZHAOLI LIU

We consider the eigenvalue problem [Formula: see text] where Ω⊂ℝN is a bounded smooth domain and Δpu denotes the p-Laplacian, 1<p<+∞; λ>0 is a parameter. The nonlinearity f is required to have an oscillatory behaviour. We prove the existence of multiple positive, multiple negative, and in particular, of multiple sign changing solutions depending on λ.

Author(s):  
Shubin Yu ◽  
Ziheng Zhang ◽  
Rong Yuan

In this paper we consider the following Schrödinger–Kirchhoff–Poisson-type system { − ( a + b ∫ Ω | ∇ u | 2 d x ) Δ u + λ ϕ u = Q ( x ) | u | p − 2 u in   Ω , − Δ ϕ = u 2 in   Ω , u = ϕ = 0 on   ∂ Ω , where Ω is a bounded smooth domain of R 3 , a > 0 , b ≥ 0 are constants and λ is a positive parameter. Under suitable conditions on Q ( x ) and combining the method of invariant sets of descending flow, we establish the existence and multiplicity of sign-changing solutions to this problem for the case that 2 < p < 4 as λ sufficient small. Furthermore, for λ = 1 and the above assumptions on Q ( x ) , we obtain the same conclusions with 2 < p < 12 5 .


2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Xingping Li ◽  
Xiumei He

We study the following Kirchhoff-type equations-a+b∫Ω∇u2dxΔu+Vxu=fx,u, inΩ,u=0, in∂Ω, whereΩis a bounded smooth domain ofRN  (N=1,2,3),a>0,b≥0,f∈C(Ω¯×R,R), andV∈C(Ω¯,R). Under some suitable conditions, we prove that the equation has three solutions of mountain pass type: one positive, one negative, and sign-changing. Furthermore, iffis odd with respect to its second variable, this problem has infinitely many sign-changing solutions.


2003 ◽  
Vol 2003 (9) ◽  
pp. 575-586 ◽  
Author(s):  
Zu-Chi Chen ◽  
Tao Luo

We consider the eigenvalue problem for the followingp-Laplacian-like equation:−div(a(|Du|p)|Du|p−2Du)=λf(x,u)inΩ,u=0on∂Ω, whereΩ⊂ℝnis a bounded smooth domain. Whenλis small enough, a multiplicity result for eigenfunctions are obtained. Two examples from nonlinear quantized mechanics and capillary phenomena, respectively, are given for applications of the theorems.


2018 ◽  
Vol 2019 (19) ◽  
pp. 5953-5974
Author(s):  
Mónica Clapp ◽  
Jorge Faya ◽  
Filomena Pacella

Abstract Let Ω be a bounded smooth domain in $\mathbb {R}^{N}$ which contains a ball of radius R centered at the origin, N ≥ 3. Under suitable symmetry assumptions, for each δ ∈ (0, R), we establish the existence of a sequence (um, δ) of nodal solutions to the critical problem $$\begin{align*}-\Delta u=|u|^{2^{\ast}-2}u\text{ in }\Omega_{\delta}:=\{x\in\Omega :\left\vert x\right\vert>\delta\},\quad u=0\text{ on }\partial \Omega_{\delta},\nonumber\end{align*}$$ where $2^{\ast }:=\frac {2N}{N-2}$ is the critical Sobolev exponent. We show that, if Ω is strictly star-shaped then, for each $m\in \mathbb {N},$ the solutions um, δ concentrate and blow up at 0, as $\delta \rightarrow 0,$ and their limit profile is a tower of nodal bubbles, that is, it is a sum of rescaled nonradial sign-changing solutions to the limit problem $$\begin{align*}-\Delta u=|u|^{2^{\ast}-2}u, \quad u\in D^{1,2}(\mathbb{R}^{N}),\nonumber\end{align*}$$ centered at the origin.


Author(s):  
Zongming Guo ◽  
Zhongyuan Liu

We continue to study the nonlinear fourth-order problem TΔu – DΔ2u = λ/(L + u)2, –L < u < 0 in Ω, u = 0, Δu = 0 on ∂Ω, where Ω ⊂ ℝN is a bounded smooth domain and λ > 0 is a parameter. When N = 2 and Ω is a convex domain, we know that there is λc > 0 such that for λ ∊ (0, λc) the problem possesses at least two regular solutions. We will see that the convexity assumption on Ω can be removed, i.e. the main results are still true for a general bounded smooth domain Ω. The main technique in the proofs of this paper is the blow-up argument, and the main difficulty is the analysis of touch-down behaviour.


2021 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Ignacio Guerra

<p style='text-indent:20px;'>We consider the following semilinear problem with a gradient term in the nonlinearity</p><p style='text-indent:20px;'><disp-formula> <label/> <tex-math id="FE1"> \begin{document}$ \begin{align*} -\Delta u = \lambda \frac{(1+|\nabla u|^q)}{(1-u)^p}\quad\text{in}\quad\Omega,\quad u&gt;0\quad \text{in}\quad \Omega, \quad u = 0\quad\text{on}\quad \partial \Omega. \end{align*} $\end{document} </tex-math></disp-formula></p><p style='text-indent:20px;'>where <inline-formula><tex-math id="M1">\begin{document}$ \lambda,p,q&gt;0 $\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id="M2">\begin{document}$ \Omega $\end{document}</tex-math></inline-formula> be a bounded, smooth domain in <inline-formula><tex-math id="M3">\begin{document}$ {\mathbb R}^N $\end{document}</tex-math></inline-formula>. We prove that when <inline-formula><tex-math id="M4">\begin{document}$ \Omega $\end{document}</tex-math></inline-formula> is a unit ball and <inline-formula><tex-math id="M5">\begin{document}$ p = 1 $\end{document}</tex-math></inline-formula> for <inline-formula><tex-math id="M6">\begin{document}$ q\in (0,q^*(N)) $\end{document}</tex-math></inline-formula> with <inline-formula><tex-math id="M7">\begin{document}$ q^*(N)\in (1,2) $\end{document}</tex-math></inline-formula>, we have infinitely many radial solutions for <inline-formula><tex-math id="M8">\begin{document}$ 2\leq N&lt;2\frac{6-q+2\sqrt{8-2q}}{(2-q)^2}+1 $\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id="M9">\begin{document}$ \lambda = \tilde \lambda $\end{document}</tex-math></inline-formula>. On the other hand, for <inline-formula><tex-math id="M10">\begin{document}$ N&gt;2\frac{6-q+2\sqrt{8-2q}}{(2-q)^2}+1 $\end{document}</tex-math></inline-formula> there exists a unique radial solution for <inline-formula><tex-math id="M11">\begin{document}$ 0&lt;\lambda&lt;\tilde \lambda $\end{document}</tex-math></inline-formula>.</p>


Author(s):  
Zhijun Zhang

This paper is mainly concerned with the global asymptotic behaviour of the unique solution to a class of singular Dirichlet problems − Δu = b(x)g(u), u > 0, x ∈ Ω, u|∂Ω = 0, where Ω is a bounded smooth domain in ℝ n , g ∈ C1(0, ∞) is positive and decreasing in (0, ∞) with $\lim _{s\rightarrow 0^+}g(s)=\infty$ , b ∈ Cα(Ω) for some α ∈ (0, 1), which is positive in Ω, but may vanish or blow up on the boundary properly. Moreover, we reveal the asymptotic behaviour of such a solution when the parameters on b tend to the corresponding critical values.


2002 ◽  
Vol 04 (03) ◽  
pp. 409-434 ◽  
Author(s):  
ADIMURTHI

In this article, we have determined the remainder term for Hardy–Sobolev inequality in H1(Ω) for Ω a bounded smooth domain and studied the existence, non existence and blow up of first eigen value and eigen function for the corresponding Hardy–Sobolev operator with Neumann boundary condition.


2017 ◽  
Vol 17 (1) ◽  
Author(s):  
Mónica Clapp ◽  
Filomena Pacella

AbstractWe establish the existence of nodal solutions to the supercritical problemin a symmetric bounded smooth domain Ω of


Sign in / Sign up

Export Citation Format

Share Document