scholarly journals Synthesis, Molecular Docking and Antimicrobial Studies of Some Novel 1,4-Dihydropyridine Derivatives

2019 ◽  
Vol 31 (12) ◽  
pp. 2976-2980 ◽  
Author(s):  
D. Ashokkumar ◽  
G. Ramalingam ◽  
M. Gopalakrishnan

Three components one pot synthesis of some novel triazole substituted 1,4-dihydropyridine compounds from the simple condensation reaction of ethyl acetoacetate, 4-amino triazole and aromatic aldehyde has been demonstrated using on low cost and efficient acetic acid catalyst in solvent free condition followed by microwave irradiation method. The newly synthesized 1,4-dihydropyridine compounds exhibit in excellent yield. The synthesized dihydropyridine derivatives are screened for antimicrobial properties and molecular docking study.

2019 ◽  
Vol 32 (2) ◽  
pp. 276-280
Author(s):  
D. Ashokkumar ◽  
M. Gopalakrishnan ◽  
G. Ramalingam

An efficient multi-component one pot synthesis of some novel bioactive 1,4-dihydropyridine derivatives from melamine using various aldehydes and 1,3-dicarbonyl compounds are reported. This reaction carried out microwave irradiation under solvent free condition using low cost and efficient acetic acid catalyst. The excellent futures of this method are eco-friendly, short reaction time and mild reaction condition. This method is convincing route for highly substituted dihydropyridine trimer synthesis. The synthesized dihydropyridine derivatives are screened for antimicrobial properties.


2016 ◽  
Vol 40 (4) ◽  
pp. 3047-3058 ◽  
Author(s):  
Dnyaneshwar D. Subhedar ◽  
Mubarak H. Shaikh ◽  
Firoz A. Kalam Khan ◽  
Jaiprakash N. Sangshetti ◽  
Vijay M. Khedkar ◽  
...  

A one-pot three-component facile synthesis of N-sulfonamidyl-4-thiazolidinone derivatives using a [HDBU][HSO4] reusable ionic liquid was carried out, together with an investigation into their antifungal and antioxidant properties and a molecular docking study.


2012 ◽  
pp. 98-106
Author(s):  
Thai Son Tran ◽  
Khac Minh Thai ◽  
Thanh Dao Tran

Background: Alzheimer is a major cause of dementia in the elderly and acetylcholinesterase inhibitors are used to treat the symptoms of this disease. Recently, chalcones have been reported as potential acetylcholinesterase inhibitors. Materials and methods: In this study, Claisen-Schmidt condensation reaction was applied to synthesize chalcones. Anti-acetylcholinesterase activity of these chalcones was determined by Ellman method. Molecular docking studies on acetylcholinesterase were performed to explain the interaction between these chalcone analogues and acetylcholinesterase active site at molecular level. Results: A total of twenty chalcones were synthesized and determined for in vitro anti-acetylcholinesterase activity. The results indicated that six compounds having IC50 value below 100 µM, three compounds having IC50 value in the range of 100 µM and 300 µM, the rest having IC50 value above 300 µM. Chalcone S17 (4’-amino-2-chlorochalcone) shows the strongest anti-acetylcholinesterase activity in the investigated group with IC50 value of 36.10 µM. In combination with the results of the in vitro anti-acetylcholinesterase activity, molecular docking study is used to explain the interaction between chalcone molecules and their active site, and the structure-activity relationship is abstracted. Conclusions: Our study indicated that the 2’-hydroxychalcones with halogen functional groups on B ring are strong acetylcholinesterase inhibitors. Chalcone S17 (4’-amino-2-chlorochalcone) could be considered as a potential lead compound for the development of new acetylcholinesterase inhibitors. Keywords: acetylcholinesterase, AChE, Alzheimer, chalcon, docking. Key words: A cetylcholinesterase, AChE, Alzheimer, chalcon, docking


2021 ◽  
Vol 32 (1) ◽  
pp. 6-21
Author(s):  
Jannatul Maowa ◽  
Asraful Alam ◽  
Kazi M. Rana ◽  
Sujan Dey ◽  
Anowar Hosen ◽  
...  

Abstract Nucleosides and their analogues are an important, well-established class of clinically useful medicinal agents that exhibit antiviral and anticancer activity. Thus, our research group has focused on the synthesis of new nucleoside derivatives that could be tested for their broad-spectrum biological activity. In this study, two new series of nucleoside derivatives were synthesized from uridine (1) through facile two-step reactions using the direct acylation method, affording 5’-O-acyl uridine derivatives in good yields. The isolated uridine analogs were further transformed into two series of 2’,3’-di-O-acyl derivatives bearing a wide variety of functionalities in a single molecular framework to evaluate their antimicrobial activity. The new synthesized compounds were characterized through physicochemical, elemental and spectroscopic analysis, and all were screened for their in vitro antimicrobial activity against selected human and plant pathogenic strains. The test compounds revealed moderate to good antibacterial and antifungal activities and were more effective against fungal phytopathogens than against bacterial strains, while many of them exhibited better antimicrobial activity than standard antibiotics. Minimum inhibition concentration (MIC) and minimum bactericidal concentration (MBC) tests against all microorganisms were also conducted for five compounds based on their activity (6, 11, 13, 16, and 17). In addition, all the derivatives were optimized using density functional theory (DFT) B3LYP/6-31g+(d,p) calculations to elucidate their thermal and molecular orbital properties. A molecular docking study was performed using the human protein 5WS1 to predict their binding affinity and modes, and ADMET and SwissADME calculations confirmed the improved pharmacokinetic properties of the compounds. Besides, structure–activity relationship (SAR), thermogravimetric analysis (TGA), and X-ray diffraction (XRD) studies were also performed. Thus, the improvement of the bioactivity of these compounds is expected to significantly contribute to the design of more antimicrobial agents for therapeutic use in the future.


2018 ◽  
Vol 74 (7) ◽  
pp. 1637-1645 ◽  
Author(s):  
Suélen K Sartori ◽  
Elson S Alvarenga ◽  
Cristiane A Franco ◽  
Danielle S Ramos ◽  
Denilson F Oliveira

Sign in / Sign up

Export Citation Format

Share Document