Comparison of Forest Fire Potential Hazards for Pinus Densiflora and Pinus Koraiensis Stands

2015 ◽  
Vol 11 (11) ◽  
pp. 261-276
Author(s):  
Sungyong Kim ◽  
Sukhee Yoon ◽  
Youseung Kim ◽  
Byungdoo Lee ◽  
Youngjin Lee ◽  
...  
Insects ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 441
Author(s):  
Junheon Kim ◽  
Young Hak Jung ◽  
Sang-Myeong Lee

The pine wood nematode (PWN), Bursaphelenchus xylophilus, causes lethal pine wilt disease (PWD) in Asia and Europe and has become a serious threat to global pine forest ecosystems. In Korea, Monochamus saltuarius transmits PWN not only to Pinus densiflora, but also to Pinus koraiensis, which is widely distributed across eastern Asia. The diel rhythmicity of M. saltuarius in response to its aggregation pheromone was studied with the aim of providing reliable data for the prevention of PWD and control of Monochamus spp. Using a spray dispenser controlled with an electronic timer, M. saltuarius pheromone and attractants (PA) were sprayed to determine the diel rhythm of the response to PA. The spraying period was divided into four time periods: 05:00–11:00 (time period A), 11:00–17:00 (time period B), 17:00–23:00 (time period C), and 23:00–05:00 (time period D). The largest number of M. saltuarius was caught in time period B, followed by A, C, and D. It could be concluded that the flight activity of M. saltuarius in response to PA was diurnal. The results of this study improve the understanding of the behavioral biology of M. saltuarius, allowing for the development of pest management strategies to prevent the spread of PWN and control its vector.


2019 ◽  
Vol 19 (3) ◽  
pp. 121-130
Author(s):  
Sunjoo Lee ◽  
Sungyong Kim ◽  
Byungdoo Lee ◽  
Young Jin Lee

2017 ◽  
Vol 13 (4) ◽  
pp. 105-115
Author(s):  
Sung Yong Kim ◽  
◽  
Young Jin Lee ◽  
Mi Na Jang ◽  
Chun Geun Kwon ◽  
...  

Forests ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 302
Author(s):  
Soon Ok Rim ◽  
Mehwish Roy ◽  
Junhyun Jeon ◽  
Jake Adolf V. Montecillo ◽  
Soo-Chul Park ◽  
...  

Fungal endophytes are ubiquitous in nature. They are known as potential sources of natural products, and possible agents for biocontrol attributing to their ability to produce a repertoire of bioactive compounds. In this study, we isolated fungal endophytes from three different tissues (needle, stem and root) of four Pinus species (Pinus densiflora, Pinus koraiensis, Pnus rigida, and Pinus thunbergii) across 18 sampling sites in Korea. A total number of 5872 culturable fungal endophytes were isolated using standard culturing techniques. Molecular identification based on the sequence analyses of the internal transcribed spacer (ITS) or 28S ribosomal DNA revealed a total of 234 different fungal species. The isolated fungal endophytes belonged to Ascomycota (91.06%), Basidiomycota (5.95%) and Mucoromycota (2.97%), with 144 operational taxonomic units (OTUs) and 88 different genera. In all sampling sites, the highest species richness (S) was observed in site 1T (51 OTUs) while the lowest was observed in site 4T (27 OTUs). In terms of diversity, as measured by Shannon diversity index (H’), the sampling site 2D (H′ = 3.216) showed the highest while the lowest H’ was observed in site 2K (H’ = 2.232). Species richness (S) in three different tissues revealed that root and needle tissues are highly colonized with fungal endophytes compared to stem tissue. No significant difference was observed in the diversity of endophytes in three different tissues. Among the four Pinus species, P. thunbergii exhibited the highest species richness and diversity of fungal endophytes. Our findings also revealed that the environmental factors have no significant impact in shaping the composition of the fungal endophytes. Furthermore, FUNGuild analysis revealed three major classifications of fungal endophytes based on trophic modes namely saprotrophs, symbiotrophs, and pathotrophs in four Pinus species, with high proportions of saprotrophs and pathothrops.


Sign in / Sign up

Export Citation Format

Share Document