A Basic Research Study on the Performance Evaluation of Light-Shelves based on Real Life Conditions during the Winter Solstice

2016 ◽  
Author(s):  
Gangmin Jeon ◽  
Heangwoo Lee ◽  
Yongseong Kim
2018 ◽  
Vol 26 (3) ◽  
pp. 198-210 ◽  
Author(s):  
Suat Gonul ◽  
Tuncay Namli ◽  
Sasja Huisman ◽  
Gokce Banu Laleci Erturkmen ◽  
Ismail Hakki Toroslu ◽  
...  

AbstractObjectiveWe aim to deliver a framework with 2 main objectives: 1) facilitating the design of theory-driven, adaptive, digital interventions addressing chronic illnesses or health problems and 2) producing personalized intervention delivery strategies to support self-management by optimizing various intervention components tailored to people’s individual needs, momentary contexts, and psychosocial variables.Materials and MethodsWe propose a template-based digital intervention design mechanism enabling the configuration of evidence-based, just-in-time, adaptive intervention components. The design mechanism incorporates a rule definition language enabling experts to specify triggering conditions for interventions based on momentary and historical contextual/personal data. The framework continuously monitors and processes personal data space and evaluates intervention-triggering conditions. We benefit from reinforcement learning methods to develop personalized intervention delivery strategies with respect to timing, frequency, and type (content) of interventions. To validate the personalization algorithm, we lay out a simulation testbed with 2 personas, differing in their various simulated real-life conditions.ResultsWe evaluate the design mechanism by presenting example intervention definitions based on behavior change taxonomies and clinical guidelines. Furthermore, we provide intervention definitions for a real-world care program targeting diabetes patients. Finally, we validate the personalized delivery mechanism through a set of hypotheses, asserting certain ways of adaptation in the delivery strategy, according to the differences in simulation related to personal preferences, traits, and lifestyle patterns.ConclusionWhile the design mechanism is sufficiently expandable to meet the theoretical and clinical intervention design requirements, the personalization algorithm is capable of adapting intervention delivery strategies for simulated real-life conditions.


2018 ◽  
Vol 122 (12) ◽  
pp. 2151-2156 ◽  
Author(s):  
James J. Nawarskas ◽  
Jason Koury ◽  
David A. Lauber ◽  
Linda A. Felton

Transport ◽  
2008 ◽  
Vol 23 (4) ◽  
pp. 291-298 ◽  
Author(s):  
Saleh Yousefi ◽  
Mahmood Fathy

In the recent years, direct message exchange between vehicles in order to improve the safety of road traffic has been attracting lots of interest in both networking and road safety communities. While travelling on a road, vehicles form an ad hoc network called Vehicular Ad hoc NETwork (VANET) and deploy life safety applications. Evaluating the performance of these applications is primordial for realizing VANETs in real life. Current literature lacks efficient ways to evaluate the performance of safety applications and mostly leverages on classical networking metrics like delay, delivery rate etc. In this paper, we consider both networking and safety concerns simultaneously to come up with more efficient methods. In particular, we first point out the significance of fairness and coverage from safety viewpoint. Then, we introduce two new metrics called beaconing rate and effective range aiming at providing more facilities for safety performance evaluation in VANET s research. Furthermore, realizing special characteristics of safety applications while disseminating beacon messages, we study the way that beacon dissemination protocols affect the performance of safety applications. We then conduct extensive simulation study to show the usefulness of the introduced metrics and derive some insights on the feasibility of driver‐assistant safety applications. Our evaluation also shows that sending the aggregated status of neighbouring vehicles in addition to vehicle's own status, and instead, increasing beacon transmission interval may be invoked in order to assist safety applications in providing satisfactory services to drivers.


2017 ◽  
Vol Volume 11 ◽  
pp. 1171-1180 ◽  
Author(s):  
Marlène Pasquet ◽  
Isabelle Pellier ◽  
Nathalie Aladjidi ◽  
Anne Auvrignon ◽  
Patrick Cherin ◽  
...  

2021 ◽  
Author(s):  
Jędrzej Matla ◽  
Kaźmierczak Andrzej

The following article presents the method of verification of EURO III standard in real life conditions for special vehicles. The test object qualified as a special vehicle of N3G category was tested in road conditions along a defined route, and then the obtained measurement results were compared to the exhaust emission standard (EURO III) applicable for this vehicle in transient testing mode. A method of comparing the emission factors in road conditions with the indicators obtained on the engine dynamometer was proposed. An AVL mobile exhaust gas analyzers (PEMS) dedicated for the Real Driving Emissions (RDE) road tests were used in the research.


Sign in / Sign up

Export Citation Format

Share Document