scholarly journals Investigation of the Effects of Base Flow on the Interaction of Off-line Air Pockets with Fluid Transients

Author(s):  
Jane Alexander ◽  
Pedro Lee ◽  
Zhao Li
2019 ◽  
Vol 141 (12) ◽  
Author(s):  
Jane Alexander ◽  
Pedro J. Lee ◽  
Mark Davidson ◽  
Huan-Feng Duan ◽  
Zhao Li ◽  
...  

Entrapped air in pipeline systems can compromise the operation of the system by blocking flow and raising pumping costs. Fluid transients are a potential tool for characterizing entrapped air pockets, and a numerical model which is able to accurately predict transient pressures for a given air volume represents an asset to the diagnostic process. This paper presents a detailed study on our current capability for modeling and predicting the dynamics of an inline air pocket, and is one of a series of articles within a broader context on air pocket dynamics. This paper presents an assessment of the accuracy of the variable wave speed and accumulator models for modeling air pockets. The variable wave speed model was found to be unstable for the given conditions, while the accumulator model is affected by amplitude and time-delay errors. The time-delay error could be partially overcome by combining the two models.


Author(s):  
Leo Barish

Although most of the wool used today consists of fine, unmedullated down-type fibers, a great deal of coarse wool is used for carpets, tweeds, industrial fabrics, etc. Besides the obvious diameter difference, coarse wool fibers are often medullated.Medullation may be easily observed using bright field light microscopy. Fig. 1A shows a typical fine diameter nonmedullated wool fiber, Fig. IB illustrates a coarse fiber with a large medulla. The opacity of the medulla is due to the inability of the mounting media to penetrate to the center of the fiber leaving air pockets. Fig. 1C shows an even thicker fiber with a very large medulla and with very thin skin. This type of wool is called “Kemp”, is shed annually or more often, and corresponds to guard hair in fur-bearing animals.


AIAA Journal ◽  
2002 ◽  
Vol 40 ◽  
pp. 2217-2224
Author(s):  
C. J. Bourdon ◽  
J. C. Dutton
Keyword(s):  

1999 ◽  
Vol 39 (10-11) ◽  
pp. 353-356 ◽  
Author(s):  
Gideon Tredoux ◽  
Peter King ◽  
Lisa Cavé

The Atlantis Water Resource Management Scheme uses artificial recharge of urban stormwater and treated wastewater to augment the natural groundwater resource. The key to the success of the scheme is the fractionation of the stormwater into components of distinctly different quality, and the separate treatment of domestic and industrial wastewater for different end-uses. The groundwater exploitation strategy is largely controlled by water quality requirements. Reuse of domestic and industrial wastewater depends on quality parameters. Tertiary treated domestic effluent is destined for indirect reuse via the aquifer, while treated industrial wastewater is used together with spent regenerant brine and stormwater from the noxious trade area for preventing seawater intrusion. Both residential and industrial stormwater is separated into the base flow and storm flow components and utilised for various purposes. The sustainable operation of the water resource scheme serves as a prototype for the optimal use of water and protection of the environment.


1977 ◽  
Vol 99 (2) ◽  
pp. 271-271
Author(s):  
C. Samuel Martin
Keyword(s):  

Author(s):  
Stefano Segadelli ◽  
Maria Filippini ◽  
Anna Monti ◽  
Fulvio Celico ◽  
Alessandro Gargini

AbstractEstimation of aquifer recharge is key to effective groundwater management and protection. In mountain hard-rock aquifers, the average annual discharge of a spring generally reflects the vertical aquifer recharge over the spring catchment. However, the determination of average annual spring discharge requires expensive and challenging field monitoring. A power-law correlation was previously reported in the literature that would allow quantification of the average annual spring discharge starting from only a few discharge measurements in the low-flow season, in a dry summer climate. The correlation is based upon the Maillet model and was previously derived by a 10-year monitoring program of discharge from springs and streams in hard-rock aquifers composed of siliciclastic and calcareous turbidites that did not have well defined hydrogeologic boundaries. In this research, the same correlation was applied to two ophiolitic (peridotitic) hard-rock aquifers in the Northern Apennines (Northern Italy) with well-defined hydrogeologic boundaries and base-outflow springs. The correlation provided a reliable estimate of the average annual spring discharge thus confirming its effectiveness regardless of bedrock lithology. In the two aquifers studied, the measurable annual outputs (i.e. sum of average annual spring discharges) could be assumed equal to the annual inputs (i.e. vertical recharge) based on the clear-cut aquifer boundaries and a quick groundwater circulation inferable from spring water parameters. Thus, in such setting, the aforementioned correlation also provided an estimate of the annual aquifer recharge allowing the assessment of coefficients of infiltration (i.e. ratio between aquifer recharge and total precipitation) ranging between 10 and 20%.


BMC Urology ◽  
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Chien-Sheng Wang ◽  
Ching-Chia Li ◽  
Wen-Jeng Wu ◽  
Wen-Chin Liou ◽  
Yusen Eason Lin ◽  
...  

Abstract Introduction Air pockets between the lithotripter head and body surface are almost inevitably generated when applying a handful of gel onto the contact portion of the treatment head and that on the patient’s skin during coupling procedure. These air pockets can compromise the transmission of acoustic energy of shock wave and may significantly affect efficacy of stone disintegration. Comparing to conventional gel, this study aims to investigate efficacy of stone disintegration by using a proprietary isolation-coupling pad (“icPad”) as the coupling medium to reduce trapped air pockets during ESWL procedure. Method In this phantom study, Dornier lithotripter (Delta-2 RC, Dornier MedTech Europe GmbH Co., Germany) was used with a proprietary gel pads (icPad, Diameter = 150 mm, Thickness = 4 mm and 8 mm). The lithotripter was equipped with inline camera to observe the trapped air pockets between the contact surface of the lithotripter head. A testing and measuring device were used to observe experimental stone disintegration using icPad and semi-liquid gel. The conventional semi-liquid gel was used as control for result comparison. Results The stone disintegration rate of icPad 4 mm and 8 mm after 200 shocks of energy at level 2 were significantly higher than that of the semi-liquid gel (disintegration rate 92.3%, 85.0% vs. 45.5%, respectively, p < 0.001). The number of shocks for complete stone disintegration by icPad of 4 mm and 8 mm at the same energy level 2 were significantly lower than that of the semi-liquid gel (the number of shocks 242.0 ± 13.8, 248.7 ± 6.3 vs. 351.0 ± 54.6, respectively, p = 0.011). Furthermore, quantitative comparison of observed air pockets under Optical Coupling Control (OCC) system showed that the area of air pockets in semi-liquid group was significantly larger than that of the group using icPad (8 mm) and that of the group using icPad (8 mm) after sliding (332.7 ± 91.2 vs. 50.3 ± 31.9, 120.3 ± 21.5, respectively, p < 0.05). Conclusion The advantages of icPad includes: (1) reduced the numbers of shock wave and increased stone disintegration rate due to icPad’s superior efficacy; (2) significantly reduce trapped air pockets in ESWL coupling. Due to the study limitation, more data are needed to confirm our observations before human trials.


Sign in / Sign up

Export Citation Format

Share Document