scholarly journals Quantification of inertial effect on the transport of macro-plastics in a tidal embayment

Author(s):  
Kabir Suara ◽  
Mohammadreza Khanarmuei ◽  
Richard Brown
2006 ◽  
Vol 66 (2) ◽  
pp. 288-302 ◽  
Author(s):  
W. Roland Gehrels ◽  
Katie Szkornik ◽  
Jesper Bartholdy ◽  
Jason R. Kirby ◽  
Sarah L. Bradley ◽  
...  

AbstractCores and exposed cliff sections in salt marshes around Ho Bugt, a tidal embayment in the northernmost part of the Danish Wadden Sea, were subjected to 14C dating and litho- and biostratigraphical analyses to reconstruct paleoenvironmental changes and to establish a late Holocene relative sea-level history. Four stages in the late Holocene development of Ho Bugt can be identified: (1) groundwater-table rise and growth of basal peat (from at least 2300 BC to AD 0); (2) salt-marsh formation (0 to AD 250); (3) a freshening phase (AD 250 to AD 1600?), culminating in the drying out of the marshes and producing a distinct black horizon followed by an aeolian phase with sand deposition; and (4) renewed salt-marsh deposition (AD 1600? to present). From 16 calibrated AMS radiocarbon ages on fossil plant fragments and 4 calibrated conventional radiocarbon ages on peat, we reconstructed a local relative sea-level history that shows a steady sea-level rise of 4 m since 4000 cal yr BP. Contrary to suggestions made in the literature, the relative sea-level record of Ho Bugt does not contain a late Holocene highstand. Relative sea-level changes at Ho Bugt are controlled by glacio-isostatic subsidence and can be duplicated by a glacial isostatic adjustment model in which no water is added to the world's oceans after ca. 5000 cal yr BP.


2021 ◽  
Author(s):  
Nia Jones ◽  
Simon Neill ◽  
Peter Robins ◽  
Matthew Lewis

<p>Rivers and estuaries act as conduits of microplastic transport, linking terrestrial and marine environments: however, it is unclear to what extent estuaries act as sources or sinks for marine plastic waste. In densely populated catchments, microplastic pollution could impact human populations and natural ecosystems including through industry, domestic activities or direct exposure. An investigation into the physical behaviour of microplastic within estuarine systems will allow for a greater understanding of plastic retention and exportation to coastal and offshore environments. A high resolution 3D model (Delft D-Flow FM) of the Conwy Estuary (UK) is under development, with current and future projections of microplastic concentrations used to determine local exposure levels, residence times and temporal variability.</p><p>The Conwy Estuary (UK) is a well-mixed macro-tidal, embayment type system connecting the Conwy catchment to the North Wales coast and Irish Sea – where waters are used for leisure and aquaculture. Microplastics derived from the catchment population, industry and agriculture are thought to flow into the estuary primarily from the Conwy river network. Because of this, this study will incorporate in-situ samples of microplastic concentrations in river water to be able to predict microplastic levels in the estuary with greater accuracy. Plastic dispersal simulations through particle tracking and water quality monitoring will be undertaken using known concentrations and future projections of microplastic.</p><p>The results of the model validation as well as application to plastic dispersal simulations will be presented.</p>


Author(s):  
M. van der Wegen ◽  
Zheng Bing Wang ◽  
H. H. G. Savenije ◽  
J. A. Roelvink

2019 ◽  
Vol 33 (24) ◽  
pp. 1950282 ◽  
Author(s):  
Yi Qiang Fan ◽  
M. Miyatake ◽  
S. Kawada ◽  
Bin Wei ◽  
S. Yoshimoto

In order to investigate the gas inertial effect on bearing capacity of acoustic levitation on condition of complex exciting shapes, a new kind of numerical model including inertial effect in cylindrical coordinates was proposed. The inertial terms in Navier–Stokes equations are packaged to derive modified Reynolds equations. The amplitudes of standing waves were tested by distance probe in experiment and film thickness equation were reconstructed by sum of the sinusoidal functions. The theoretical and experimental results implied that the inertial effect is strongly related to the exciting modal shapes. It is concluded that the proposal of modified Reynolds equation can provide more optimized numerical solutions to solve the problems about the deviation between theoretical and experimental data.


1992 ◽  
Vol 47 (9) ◽  
pp. 971-973 ◽  
Author(s):  
A. Kawski ◽  
P. Bojarski ◽  
A. Kubicki

Abstract The influence of the moment of inertia on the rotational fluorescence depolarization is discussed. Based on experimental results obtained for five luminescent compounds: 2,5-diphenyloxazole (PPO), 2,2'-p-phenylene-bis(5-phenyloxazole) (POPOP), p-bis[2-(5-α-naphthyloxazolyl)]-benzene (α-NOPON), 4-dimethylamino-ω-methylsulphonyl-trans-styrene (3a) in n-parafines at low viscosity (from 0.22 x 10-3 Pa • s to 0.993 x 10-3 Pa • s) and diphenylenestilbene (DPS) in different solvents, a semi-empirical equation is proposed, yielding moments of inertia that are only two to five times higher than those estimated from the molecular geometry


Sign in / Sign up

Export Citation Format

Share Document