scholarly journals Portable Gantry Crane Payload Angle Limitation Control with the Presence of Trolley Position Vibration using Optimal Control

Author(s):  
Mustefa Jibril ◽  
Messay Tadese ◽  
Reta Degefa

In this paper, a portable gantry crane is designed and controlled with the presence of trolley vibration disturbance using robust control technique. In the open loop system, the payload angle is not stable in both the impulse and step input force signals. Comparison of the system with H 2 and μ - synthesis controllers have been done for a step and impulse input force signal and a promising results have been analyzed.

Author(s):  
Mustefa Jibril ◽  
Messay Tadese ◽  
Eliyas Alemayehu

In this paper, modelling designing and simulation of a simple voltage amplidyne system is done using robust control theory. In order to increase the performance of the voltage amplidyne system with H ∞ optimal control synthesis and H ∞ optimal control synthesis via ∞-iteration controllers are used. The open loop response of the voltage amplidyne system shows that the system can amplify the input 7 times. Comparison of the voltage amplidyne system with H ∞ optimal control synthesis and H ∞ optimal control synthesis via ∞-iteration controllers to track a desired step input have been done. Finally, the comparative simulation results prove the effectiveness of the proposed voltage amplidyne system with H ∞ optimal control synthesis controller in improving the percentage overshoot and the settling time.


Author(s):  
Mustefa Jibril ◽  
Messay Tadese ◽  
Eliyas Alemayehu

This paper presents the application of optimal control problem in modeling of stirred tank heater temperature control. The analysis of the open loop system shows that the system is not efficient without a controller. Linear Quadratic Gaussian (LQG) and Linear Quadratic Integral (LQI) controllers are used to increase the performance of the system. Comparison of the closed loop system with the proposed controllers have been done with Matlab/Simulink Toolbox and a promising results have been analyzed.


Author(s):  
Mustefa Jibril ◽  
Messay Tadese ◽  
Eliyas Alemayehu

This paper presents the application of optimal control problem in modeling of stirred tank heater temperature control. The analysis of the open loop system shows that the system is not efficient without a controller. Linear Quadratic Gaussian (LQG) and Linear Quadratic Integral (LQI) controllers are used to increase the performance of the system. Comparison of the closed loop system with the proposed controllers have been done with Matlab/Simulink Toolbox and a promising results have been analyzed.


Author(s):  
Amit Pandey ◽  
Maurício de Oliveira ◽  
Chad M. Holcomb

Several techniques have recently been proposed to identify open-loop system models from input-output data obtained while the plant is operating under closed-loop control. So called multi-stage identification techniques are particularly useful in industrial applications where obtaining input-output information in the absence of closed-loop control is often difficult. These open-loop system models can then be employed in the design of more sophisticated closed-loop controllers. This paper introduces a methodology to identify linear open-loop models of gas turbine engines using a multi-stage identification procedure. The procedure utilizes closed-loop data to identify a closed-loop sensitivity function in the first stage and extracts the open-loop plant model in the second stage. The closed-loop data can be obtained by any sufficiently informative experiment from a plant in operation or simulation. We present simulation results here. This is the logical process to follow since using experimentation is often prohibitively expensive and unpractical. Both identification stages use standard open-loop identification techniques. We then propose a series of techniques to validate the accuracy of the identified models against first principles simulations in both the time and frequency domains. Finally, the potential to use these models for control design is discussed.


Author(s):  
G. R. Yantio Njankeu ◽  
J.-Y. Paris ◽  
J. Denape ◽  
L. Pichon ◽  
J.-P. Rivie`re

Titanium alloys are well known to present poor sliding behaviour and high wear values. Various coatings and treatments have been tested to prevent such an occurrence under fretting conditions at high frequency of displacement (100 Hz). An original test apparatus, using an open-loop system instead of a classical imposed displacement simulator, has been performed to directly display the phenomenon of seizure, defined as the stopping of the relative motion between the contacting elements. A classification of the tested coatings has been proposed on the basis of their capacity to maintain full or partial sliding conditions, to present low wear rates and to prevent seizure.


1994 ◽  
Vol 116 (2) ◽  
pp. 309-313 ◽  
Author(s):  
Jenq-Tzong H. Chan

A method to synthesize decoupled multivariable control system from a batch of plant test data is introduced. The method is applicable when the system has more inputs than outputs and is open-loop stable. An advantage of this method is that explicit identification of an open-loop system model is not required for controller synthesis.


2011 ◽  
Vol 22 (2) ◽  
pp. 227-237 ◽  
Author(s):  
Paulo Moura Oliveira ◽  
Damir Vrančić ◽  
J. Boaventura Cunha ◽  
E. J. Solteiro Pires

Sign in / Sign up

Export Citation Format

Share Document