scholarly journals Convolutional neural networks performance evaluation applied to automated pavement crack detection

TRANSPORTES ◽  
2020 ◽  
Vol 28 (5) ◽  
pp. 267-279
Author(s):  
Francisco Dalla Rosa ◽  
Laura Dall'Igna Favretto ◽  
Vítor Borba Rodrigues ◽  
Nasir G. Gharaibeh

Neste artigo é avaliado o potencial de Redes Neurais Convolucionais (RNC) como ferramenta automatizada para detecção de trincas em superfícies de pavimentos. Foram utilizadas fotografias da superfície de diferentes segmentos de um pavimento do tipo Cheapseal, obtidas a partir de câmeras fotográficas montadas em veículos. As imagens foram avaliadas a partir da proposta do uso de duas arquiteturas de redes neurais convolutionais e implementadas com o auxílio da biblioteca de aprendizado de máquina PyTorch, o qual possui código aberto e disponível na forma de script em linguagem Python. As imagens foram processadas com o uso de três técnicas diferentes, com o intuito de avaliar a influência da complexidade dos algoritmos propostos. Para análise da performance da rede neural, foram utilizadas como métricas de avaliação a acurácia, a precisão, o recall e o F1 score. Os resultados apontaram que a arquitetura da rede neural escolhida apresentou desempenho satisfatório na detecção de trincas, bem como indicam que a complexidade da rede é um dos fatores a ser considerado durante o processo de classificação das imagens.

Coatings ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 152 ◽  
Author(s):  
Zhun Fan ◽  
Chong Li ◽  
Ying Chen ◽  
Paola Di Mascio ◽  
Xiaopeng Chen ◽  
...  

Automated pavement crack detection and measurement are important road issues. Agencies have to guarantee the improvement of road safety. Conventional crack detection and measurement algorithms can be extremely time-consuming and low efficiency. Therefore, recently, innovative algorithms have received increased attention from researchers. In this paper, we propose an ensemble of convolutional neural networks (without a pooling layer) based on probability fusion for automated pavement crack detection and measurement. Specifically, an ensemble of convolutional neural networks was employed to identify the structure of small cracks with raw images. Secondly, outputs of the individual convolutional neural network model for the ensemble were averaged to produce the final crack probability value of each pixel, which can obtain a predicted probability map. Finally, the predicted morphological features of the cracks were measured by using the skeleton extraction algorithm. To validate the proposed method, some experiments were performed on two public crack databases (CFD and AigleRN) and the results of the different state-of-the-art methods were compared. To evaluate the efficiency of crack detection methods, three parameters were considered: precision (Pr), recall (Re) and F1 score (F1). For the two public databases of pavement images, the proposed method obtained the highest values of the three evaluation parameters: for the CFD database, Pr = 0.9552, Re = 0.9521 and F1 = 0.9533 (which reach values up to 0.5175 higher than the values obtained on the same database with the other methods), for the AigleRN database, Pr = 0.9302, Re = 0.9166 and F1 = 0.9238 (which reach values up to 0.7313 higher than the values obtained on the same database with the other methods). The experimental results show that the proposed method outperforms the other methods. For crack measurement, the crack length and width can be measure based on different crack types (complex, common, thin, and intersecting cracks.). The results show that the proposed algorithm can be effectively applied for crack measurement.


Author(s):  
Pouria Asadi ◽  
Hamid Mehrabi ◽  
Alireza Asadi ◽  
Melody Ahmadi

Pavement distress assessment is a significant aspect of pavement management. Automated pavement crack detection is a challenging task that has been researched for decades in response to complicated pavement conditions. Current pavement condition assessment procedures are extensively time consuming, expensive, and labor-intensive. The primary goal of this paper is to develop a cost-effective and reliable platform using a red, green, blue, depth (RGB-D) sensor and deep learning detection models for automated pavement crack detection on a single-board ARM-based computer. To the best of our knowledge, for the first time, a pavement crack data set is prepared using a global shutter RGB-D sensor mounted on a car and annotated according to the Pascal visual object classes protocol, named PAVDIS2020. The proposed data set comprises 2,085 pavement crack images that are captured in a wide variety of weather and illuminance conditions with 5,587 instances of pavement cracks included in these images. A unified implementation of the Faster region-based convolutional neural networks and single shot multibox detector meta-architecture-based models is implemented to evaluate the accuracy, speed, and memory usage trade-off by using various convolutional neural networks-based backbones and various other training parameters on PAVDIS2020. The proposed pavement crack detection model was able to classify the cracks with 97.6% accuracy on PAVDIS2020 data set. The detection model is able to locate pavement crack patterns at the speed of 12 frames per second on a passively cooled Raspberry Pi 4 single-board computer.


2021 ◽  
Vol 11 (11) ◽  
pp. 5074
Author(s):  
Haotian Li ◽  
Zhuang Yue ◽  
Jingyu Liu ◽  
Yi Wang ◽  
Huaiyu Cai ◽  
...  

Cracks are one of the most serious defects that threaten the safety of bridges. In order to detect different forms of cracks in different collection environments quickly and accurately, we proposed a pixel-level crack segmentation network based on convolutional neural networks, which is called the Skip Connected Crack Detection Network (SCCDNet). The network is composed of three parts: the Encoder module with 13 convolutional layers pretrained in the VGG-16 network, the Decoder module with a densely connected structure, and the Skip-Squeeze-and-Excitation (SSE) module which connects the feature map shaving the same resolution in the Encoder and Decoder. We used depthwise separable convolution to improve the accuracy of crack segmentation while reducing the complexity of the model. In this paper, a dataset containing cracks collected in different scenes was established, and SCCDNet was trained and tested on this dataset. Compared with the advanced models, SCCDNet obtained the best crack segmentation performance, while F-score reached 0.7763.


2022 ◽  
Vol 301 ◽  
pp. 113872
Author(s):  
Lukka Thuyavan Yogarathinam ◽  
Kirubakaran Velswamy ◽  
Arthanareeswaran Gangasalam ◽  
Ahmad Fauzi Ismail ◽  
Pei Sean Goh ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document