scholarly journals S1340 Deep Learning and Capsule Endoscopy: Automatic Classification of Small Bowel Cleansing Using a Convolutional Neural Network

2021 ◽  
Vol 116 (1) ◽  
pp. S617-S618
Author(s):  
Miguel Mascarenhas ◽  
Joao Afonso ◽  
Tiago Ribeiro ◽  
João Ferreira ◽  
Hélder Cardoso ◽  
...  
2021 ◽  
pp. 1-12
Author(s):  
K. Seethappan ◽  
K. Premalatha

Although there have been various researches in the detection of different figurative language, there is no single work in the automatic classification of euphemisms. Our primary work is to present a system for the automatic classification of euphemistic phrases in a document. In this research, a large dataset consisting of 100,000 sentences is collected from different resources for identifying euphemism or non-euphemism utterances. In this work, several approaches are focused to improve the euphemism classification: 1. A Combination of lexical n-gram features 2.Three Feature-weighting schemes 3.Deep learning classification algorithms. In this paper, four machine learning (J48, Random Forest, Multinomial Naïve Bayes, and SVM) and three deep learning algorithms (Multilayer Perceptron, Convolutional Neural Network, and Long Short-Term Memory) are investigated with various combinations of features and feature weighting schemes to classify the sentences. According to our experiments, Convolutional Neural Network (CNN) achieves precision 95.43%, recall 95.06%, F-Score 95.25%, accuracy 95.26%, and Kappa 0.905 by using a combination of unigram and bigram features with TF-IDF feature weighting scheme in the classification of euphemism. These results of experiments show CNN with a strong combination of unigram and bigram features set with TF-IDF feature weighting scheme outperforms another six classification algorithms in detecting the euphemisms in our dataset.


2022 ◽  
Vol 10 (1) ◽  
pp. 0-0

Brain tumor is a severe cancer disease caused by uncontrollable and abnormal partitioning of cells. Timely disease detection and treatment plans lead to the increased life expectancy of patients. Automated detection and classification of brain tumor are a more challenging process which is based on the clinician’s knowledge and experience. For this fact, one of the most practical and important techniques is to use deep learning. Recent progress in the fields of deep learning has helped the clinician’s in medical imaging for medical diagnosis of brain tumor. In this paper, we present a comparison of Deep Convolutional Neural Network models for automatically binary classification query MRI images dataset with the goal of taking precision tools to health professionals based on fined recent versions of DenseNet, Xception, NASNet-A, and VGGNet. The experiments were conducted using an MRI open dataset of 3,762 images. Other performance measures used in the study are the area under precision, recall, and specificity.


Author(s):  
Rozilawati Dollah ◽  
Chew Yi ◽  
Norhawaniah Zakaria ◽  
Mohd Shahizan ◽  
Abd Wahid

2015 ◽  
Vol 26 (1) ◽  
pp. 195-202 ◽  
Author(s):  
Francesco Ciompi ◽  
Bartjan de Hoop ◽  
Sarah J. van Riel ◽  
Kaman Chung ◽  
Ernst Th. Scholten ◽  
...  

PLoS ONE ◽  
2020 ◽  
Vol 15 (7) ◽  
pp. e0234959 ◽  
Author(s):  
Daniel Motta ◽  
Alex Álisson Bandeira Santos ◽  
Bruna Aparecida Souza Machado ◽  
Otavio Gonçalvez Vicente Ribeiro-Filho ◽  
Luis Octavio Arriaga Camargo ◽  
...  

2019 ◽  
Vol 9 (16) ◽  
pp. 3312 ◽  
Author(s):  
Zhu ◽  
Ge ◽  
Liu

In order to realize the non-destructive intelligent identification of weld surface defects, an intelligent recognition method based on deep learning is proposed, which is mainly formed by convolutional neural network (CNN) and forest random. First, the high-level features are automatically learned through the CNN. Random forest is trained with extracted high-level features to predict the classification results. Secondly, the weld surface defects images are collected and preprocessed by image enhancement and threshold segmentation. A database of weld surface defects is established using pre-processed images. Finally, comparative experiments are performed on the weld surface defects database. The results show that the accuracy of the method combined with CNN and random forest can reach 0.9875, and it also demonstrates the method is effective and practical.


Sensors ◽  
2020 ◽  
Vol 20 (14) ◽  
pp. 4017 ◽  
Author(s):  
Davor Kolar ◽  
Dragutin Lisjak ◽  
Michał Pająk ◽  
Danijel Pavković

Fault diagnosis is considered as an essential task in rotary machinery as possibility of an early detection and diagnosis of the faulty condition can save both time and money. This work presents developed and novel technique for deep-learning-based data-driven fault diagnosis for rotary machinery. The proposed technique input raw three axes accelerometer signal as high definition 1D image into deep learning layers which automatically extract signal features, enabling high classification accuracy. Unlike the researches carried out by other researchers, accelerometer data matrix with dimensions 6400 × 1 × 3 is used as input for convolutional neural network training. Since convolutional neural networks can recognize patterns across input matrix, it is expected that wide input matrix containing vibration data should yield good classification performance. Using convolutional neural networks (CNN) trained model, classification in one of the four classes can be performed. Additionally, number of kernels of CNN is optimized using grid search, as preliminary studies show that alternating number of kernels impacts classification results. This study accomplished the effective classification of different rotary machinery states using convolutional artificial neural network for classification of raw three axis accelerometer signal input.


2020 ◽  
Vol 8 (7) ◽  
pp. 486-486
Author(s):  
Gaoshuang Liu ◽  
Jie Hua ◽  
Zhan Wu ◽  
Tianfang Meng ◽  
Mengxue Sun ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document