A comparative analysis of euphemistic sentences in news using feature weight scheme and intelligent techniques

2021 ◽  
pp. 1-12
Author(s):  
K. Seethappan ◽  
K. Premalatha

Although there have been various researches in the detection of different figurative language, there is no single work in the automatic classification of euphemisms. Our primary work is to present a system for the automatic classification of euphemistic phrases in a document. In this research, a large dataset consisting of 100,000 sentences is collected from different resources for identifying euphemism or non-euphemism utterances. In this work, several approaches are focused to improve the euphemism classification: 1. A Combination of lexical n-gram features 2.Three Feature-weighting schemes 3.Deep learning classification algorithms. In this paper, four machine learning (J48, Random Forest, Multinomial Naïve Bayes, and SVM) and three deep learning algorithms (Multilayer Perceptron, Convolutional Neural Network, and Long Short-Term Memory) are investigated with various combinations of features and feature weighting schemes to classify the sentences. According to our experiments, Convolutional Neural Network (CNN) achieves precision 95.43%, recall 95.06%, F-Score 95.25%, accuracy 95.26%, and Kappa 0.905 by using a combination of unigram and bigram features with TF-IDF feature weighting scheme in the classification of euphemism. These results of experiments show CNN with a strong combination of unigram and bigram features set with TF-IDF feature weighting scheme outperforms another six classification algorithms in detecting the euphemisms in our dataset.

2021 ◽  
Vol 13 (10) ◽  
pp. 1953
Author(s):  
Seyed Majid Azimi ◽  
Maximilian Kraus ◽  
Reza Bahmanyar ◽  
Peter Reinartz

In this paper, we address various challenges in multi-pedestrian and vehicle tracking in high-resolution aerial imagery by intensive evaluation of a number of traditional and Deep Learning based Single- and Multi-Object Tracking methods. We also describe our proposed Deep Learning based Multi-Object Tracking method AerialMPTNet that fuses appearance, temporal, and graphical information using a Siamese Neural Network, a Long Short-Term Memory, and a Graph Convolutional Neural Network module for more accurate and stable tracking. Moreover, we investigate the influence of the Squeeze-and-Excitation layers and Online Hard Example Mining on the performance of AerialMPTNet. To the best of our knowledge, we are the first to use these two for regression-based Multi-Object Tracking. Additionally, we studied and compared the L1 and Huber loss functions. In our experiments, we extensively evaluate AerialMPTNet on three aerial Multi-Object Tracking datasets, namely AerialMPT and KIT AIS pedestrian and vehicle datasets. Qualitative and quantitative results show that AerialMPTNet outperforms all previous methods for the pedestrian datasets and achieves competitive results for the vehicle dataset. In addition, Long Short-Term Memory and Graph Convolutional Neural Network modules enhance the tracking performance. Moreover, using Squeeze-and-Excitation and Online Hard Example Mining significantly helps for some cases while degrades the results for other cases. In addition, according to the results, L1 yields better results with respect to Huber loss for most of the scenarios. The presented results provide a deep insight into challenges and opportunities of the aerial Multi-Object Tracking domain, paving the way for future research.


Sensors ◽  
2021 ◽  
Vol 21 (8) ◽  
pp. 2852
Author(s):  
Parvathaneni Naga Srinivasu ◽  
Jalluri Gnana SivaSai ◽  
Muhammad Fazal Ijaz ◽  
Akash Kumar Bhoi ◽  
Wonjoon Kim ◽  
...  

Deep learning models are efficient in learning the features that assist in understanding complex patterns precisely. This study proposed a computerized process of classifying skin disease through deep learning based MobileNet V2 and Long Short Term Memory (LSTM). The MobileNet V2 model proved to be efficient with a better accuracy that can work on lightweight computational devices. The proposed model is efficient in maintaining stateful information for precise predictions. A grey-level co-occurrence matrix is used for assessing the progress of diseased growth. The performance has been compared against other state-of-the-art models such as Fine-Tuned Neural Networks (FTNN), Convolutional Neural Network (CNN), Very Deep Convolutional Networks for Large-Scale Image Recognition developed by Visual Geometry Group (VGG), and convolutional neural network architecture that expanded with few changes. The HAM10000 dataset is used and the proposed method has outperformed other methods with more than 85% accuracy. Its robustness in recognizing the affected region much faster with almost 2× lesser computations than the conventional MobileNet model results in minimal computational efforts. Furthermore, a mobile application is designed for instant and proper action. It helps the patient and dermatologists identify the type of disease from the affected region’s image at the initial stage of the skin disease. These findings suggest that the proposed system can help general practitioners efficiently and effectively diagnose skin conditions, thereby reducing further complications and morbidity.


2022 ◽  
Vol 10 (1) ◽  
pp. 0-0

Brain tumor is a severe cancer disease caused by uncontrollable and abnormal partitioning of cells. Timely disease detection and treatment plans lead to the increased life expectancy of patients. Automated detection and classification of brain tumor are a more challenging process which is based on the clinician’s knowledge and experience. For this fact, one of the most practical and important techniques is to use deep learning. Recent progress in the fields of deep learning has helped the clinician’s in medical imaging for medical diagnosis of brain tumor. In this paper, we present a comparison of Deep Convolutional Neural Network models for automatically binary classification query MRI images dataset with the goal of taking precision tools to health professionals based on fined recent versions of DenseNet, Xception, NASNet-A, and VGGNet. The experiments were conducted using an MRI open dataset of 3,762 images. Other performance measures used in the study are the area under precision, recall, and specificity.


Author(s):  
Rozilawati Dollah ◽  
Chew Yi ◽  
Norhawaniah Zakaria ◽  
Mohd Shahizan ◽  
Abd Wahid

2015 ◽  
Vol 26 (1) ◽  
pp. 195-202 ◽  
Author(s):  
Francesco Ciompi ◽  
Bartjan de Hoop ◽  
Sarah J. van Riel ◽  
Kaman Chung ◽  
Ernst Th. Scholten ◽  
...  

PLoS ONE ◽  
2020 ◽  
Vol 15 (7) ◽  
pp. e0234959 ◽  
Author(s):  
Daniel Motta ◽  
Alex Álisson Bandeira Santos ◽  
Bruna Aparecida Souza Machado ◽  
Otavio Gonçalvez Vicente Ribeiro-Filho ◽  
Luis Octavio Arriaga Camargo ◽  
...  

2019 ◽  
Vol 9 (16) ◽  
pp. 3312 ◽  
Author(s):  
Zhu ◽  
Ge ◽  
Liu

In order to realize the non-destructive intelligent identification of weld surface defects, an intelligent recognition method based on deep learning is proposed, which is mainly formed by convolutional neural network (CNN) and forest random. First, the high-level features are automatically learned through the CNN. Random forest is trained with extracted high-level features to predict the classification results. Secondly, the weld surface defects images are collected and preprocessed by image enhancement and threshold segmentation. A database of weld surface defects is established using pre-processed images. Finally, comparative experiments are performed on the weld surface defects database. The results show that the accuracy of the method combined with CNN and random forest can reach 0.9875, and it also demonstrates the method is effective and practical.


Sign in / Sign up

Export Citation Format

Share Document