scholarly journals Complex Covariance

10.14311/1809 ◽  
2013 ◽  
Vol 53 (3) ◽  
Author(s):  
Frieder Kleefeld

According to some generalized correspondence principle the classical limit of a non-Hermitian quantum theory describing quantum degrees of freedom is expected to be the well known classical mechanics of classical degrees of freedom in the complex phase space, i.e., some phase space spanned by complex-valued space and momentum coordinates. As special relativity was developed by Einstein merely for real-valued space-time and four-momentum, we will try to understand how special relativity and covariance can be extended to complex-valued space-time and four-momentum. Our considerations will lead us not only to some unconventional derivation of Lorentz transformations for complex-valued velocities, but also to the non-Hermitian Klein-Gordon and Dirac equations, which are to lay the foundations of a non-Hermitian quantum theory.

1991 ◽  
Vol 32 (7) ◽  
pp. 1788-1795 ◽  
Author(s):  
Daniel Zerzion ◽  
L. P. Horwitz ◽  
R. I. Arshansky

2005 ◽  
Vol 02 (04) ◽  
pp. 633-655
Author(s):  
JOSÉ M. ISIDRO

Duality transformations within the quantum mechanics of a finite number of degrees of freedom can be regarded as the dependence of the notion of a quantum, i.e., an elementary excitation of the vacuum, on the observer on classical phase space. Under an observer we understand, as in general relativity, a local coordinate chart. While classical mechanics can be formulated using a symplectic structure on classical phase space, quantum mechanics requires a complex-differentiable structure on that same space. Complex-differentiable structures on a given real manifold are often not unique. This article is devoted to analysing the dependence of the notion of a quantum on the complex-differentiable structure chosen on classical phase space. For that purpose we consider Kähler phase spaces, endowed with a dynamics whose Hamiltonian equals the local Kähler potential.


2016 ◽  
Vol 31 (09) ◽  
pp. 1650041 ◽  
Author(s):  
Charles Schwartz

We construct momentum space expansions for the wave functions that solve the Klein–Gordon and Dirac equations for tachyons, recognizing that the mass shell for such fields is very different from what we are used to for ordinary (slower than light) particles. We find that we can postulate commutation or anticommutation rules for the operators that lead to physically sensible results: causality, for tachyon fields, means that there is no connection between space–time points separated by a timelike interval. Calculating the conserved charge and four-momentum for these fields allows us to interpret the number operators for particles and antiparticles in a consistent manner; and we see that helicity plays a critical role for the spinor field. Some questions about Lorentz invariance are addressed and some remain unresolved; and we show how to handle the group representation for tachyon spinors.


2003 ◽  
Vol 12 (02) ◽  
pp. 299-315 ◽  
Author(s):  
J. KOWALSKI-GLIKMAN ◽  
S. NOWAK

Doubly Special Relativity (DSR) theory is a recently proposed theory with two observer-independent scales (of velocity and mass), which is to describe a kinematic structure underlining the theory of Quantum Gravity. We observe that there are infinitely many DSR constructions of the energy–momentum sector, each of whose can be promoted to the κ-Poincaré quantum (Hopf) algebra. Then we use the co-product of this algebra and the Heisenberg double construction of κ-deformed phase space in order to derive the non-commutative space–time structure and the description of the whole of DSR phase space. Next we show that contrary to the ambiguous structure of the energy momentum sector, the space–time of the DSR theory is unique and related to the theory with non-commutative space–time proposed long ago by Snyder. This theory provides non-commutative version of Minkowski space–time enjoying ordinary Lorentz symmetry. It turns out that when one builds a natural phase space on this space–time, its intrinsic length parameter ℓ becomes observer-independent.


Author(s):  
P. A. M. Dirac

In classical mechanics the state of a dynamical system at any particular time can be described by the values of a set of coordinates and their conjugate momenta, thus, if the system has n degrees of freedom, by 2n numbers. In quantum mechanics, on the other hand, we have to describe a state of the system by a wave function involving a set of coordinates, thus by a function of n variables. The quantum description is, therefore, much more complicated than the classical one. Let us consider, however, an ensemble of systems in Gibbs' sense, i.e. not a large number of actual systems which could, perhaps, interact with one another, but a large number of hypothetical systems which are introduced to describe one actual system of which our knowledge is only of a statistical nature. The basis of the quantum treatment of such an ensemble has been given by Neumann. The description obtained by Neumann of an ensemble on the quantum theory is no more complicated than the corresponding classical description. Thus the quantum theory, which appears to such a disadvantage on the score of complication when applied to individual systems, recovers its own when applied to an ensemble. It is the object of the present note to examine this question more closely and to show how complete the analogy is between the quantum and classical treatments of an ensemble.


1988 ◽  
Vol 43 (5) ◽  
pp. 411-418 ◽  
Author(s):  
B. Bruhn

This paper considers the Lie series representation of the canonical transformations in a complex phase space. A condition is given which selects the canonical mappings from the Lie transformations associated with a complex-valued generating function. Some special types of mappings and some simple algebraic tools are discussed.


2017 ◽  
Vol 14 (10) ◽  
pp. 1750141 ◽  
Author(s):  
Slimane Zaim ◽  
Hakim Guelmamene ◽  
Yazid Delenda

We obtain exact solutions to the two-dimensional (2D) Klein–Gordon oscillator in a non-commutative (NC) complex phase space to first order in the non-commutativity parameter. We derive the exact NC energy levels and show that the energy levels split to [Formula: see text] levels. We find that the non-commutativity plays the role of a magnetic field interacting automatically with the spin of a particle induced by the non-commutativity of complex phase space. The effect of the non-commutativity parameter on the thermal properties is discussed. It is found that the dependence of the heat capacity [Formula: see text] on the NC parameter gives rise to a negative quantity. Phenomenologically, this effectively confirms the presence of the effects of self-gravitation induced by the non-commutativity of complex phase space.


Author(s):  
Gary Nash

With appropriate modifications, the multi-spin Klein–Gordon (KG) equation of quantum field theory can be adapted to curved space–time for spins 0, 1, 1/2. The associated particles in the microworld then move as a wave at all space–time coordinates. From the existence in a Lorentzian space–time of a line element field [Formula: see text], the spin-1 KG equation [Formula: see text] is derived from an action functional involving [Formula: see text] and its covariant derivative. The spin-0 KG equation and the KG equation of the outer product of a spin-1/2 Dirac spinor and its Hermitian conjugate are then constructed. Thus, [Formula: see text] acts as a fundamental quantum vector field. The symmetric part of the spin-1 KG equation, [Formula: see text], is the Lie derivative of the metric. That links the multi-spin KG equation to Modified General Relativity (MGR) through its energy–momentum tensor of the gravitational field. From the invariance of the action functionals under the diffeomorphism group Diff(M), which is not restricted to the Lorentz group, [Formula: see text] can instantaneously transmit information along [Formula: see text]. That establishes the concept of entanglement within a Lorentzian formalism. The respective local/nonlocal characteristics of MGR and quantum theory no longer present an insurmountable problem to unify the theories.


2021 ◽  
pp. 191-206
Author(s):  
J. Iliopoulos ◽  
T.N. Tomaras

The Klein–Gordon and the Dirac equations are studied as candidates for a relativistic generalisation of the Schrödinger equation. We show that the first is unacceptable because it admits solutions with arbitrarily large negative energy and has no conserved current with positive definite probability density. The Dirac equation on the other hand does have a physically acceptable conserved current, but it too suffers from the presence of negative energy solutions. We show that the latter can be interpreted as describing anti-particles. In either case there is no fully consistent interpretation as a single-particle wave equation and we are led to a formalism admitting an infinite number of degrees of freedom, that is a quantum field theory. We can still use the Dirac equation at low energies when the effects of anti-particles are negligible and we study applications in atomic physics.


We explore the semi-classical structure of the Wigner functions Ψ( q,p ) representing bound energy eigenstates | Ψ 〉 for systems with f degrees of freedom. If the classical motion is integrable, the classical limit of Ψ is a delta function on the f -dimensional torus to which classical trajectories corresponding to |Ψ〉 are confined in the 2 f -dimensional phase space. In the semi-classical limit of Ψ ( ℏ small but not zero) the delta function softens to a peak of order Ψ−  f and the torus develops fringes of a characteristic ‘Airy’ form. Away from the torus,Ψ can have semi-classical singularities that are not delta functions; these are discussed (in full detail when f = 1) using Thom's theory of catastrophes. Brief consideration is given to problems raised when is calculated in a representation based on operators derived from angle coordinates and their conjugate momenta. When Ψ the classical motion is non-integrable, the phase space is not filled with tori and existing semi-classical methods fail. We conjecture that (a) For a given value of non-integrability parameter ⋲ ,the system passes through three semi-classical régimes as ℏ diminishes. (b) For states |Ψ〉 associated with regions in phase space filled with irregular trajectories, Ψ will be a random function confined near that region of the ‘energy shell’ explored by these trajectories (this region has more thanks dimensions). (c) For ⋲ ≠ 0, ℏ blurs the infinitely fine classical path structure, in contrast to the integrable case ⋲ = 0, where ℏ imposes oscillatory quantum detail on a smooth classical path structure.


Sign in / Sign up

Export Citation Format

Share Document