scholarly journals Multi-agent Contracting and Reconfiguration in Competitive Environments using Acquaintance Models

10.14311/838 ◽  
2006 ◽  
Vol 46 (4) ◽  
Author(s):  
J. Bíba ◽  
J. Vokřínek

Cooperation of agents in competitive environments is more complicated than in collaborative environments. Both replanning and reconfiguration play a crucial role in cooperation, and introduce a means for implementating a system flexibility. The concepts of commitments, decommitments with penalties and subcontracting may facilitate effective reconfiguration and replanning. Agents in competitive environments are fully autonomous and selfinterested. Therefore the setting of penalties and profit computation cannot be provided centrally. Both the costs and the gain differ from agent to agent with respect to contracts already agreed and resources load. This paper proposes an acquaintance model for contracting in competitive environments and introduces possibilities of reconfigurating in competitive environments as a means of decommitment optimization with respect to resources load and profit maximization. The presented algorithm for contract price setting does not use any centralized knowledge and provides results corresponding to a realistic environment. A simple customerprovider scenario proves this algorithm in competitive contracting. 

2020 ◽  
Vol 52 (1) ◽  
pp. 319-347
Author(s):  
Hakjin Chung ◽  
Hyun-Soo Ahn ◽  
Rhonda Righter

AbstractThe ‘Price of Anarchy’ states that the performance of multi-agent service systems degrades with the agents’ selfishness (anarchy). We investigate a service model in which both customers and the firm are strategic. We find that, for a Stackelberg game in which the server invests in capacity before customers decide whether or not to join, there can be a ‘Benefit of Anarchy’, that is, customers acting selfishly can have a greater overall utility than customers who are coordinated to maximize their overall utility. We also show that customer anarchy can be socially beneficial, resulting in a ‘Social Benefit of Anarchy’. We show that such phenomena are rather general and can arise in multiple settings (e.g. in both profit-maximizing and welfare-maximizing firms, in both capacity-setting and price-setting firms, and in both observable and unobservable queues). However, the underlying mechanism leading to the Benefit of Anarchy can differ significantly from one setting to another.


Author(s):  
D. Jeya Mala ◽  
R. Iswarya

In real time software systems, testing plays a crucial role as any of the critical components in these systems are left undetected, then inadvertent effects will happen which will lead to erroneous operations, system failure, high cost and resource wastage etc. To address this most important and the emergent problem, this research work proposes an effective method by means of multi-agents based approach to identify such critical components and execute test cases along the critical test paths which will aid in effectively covering them during testing. Finally, this paper also compared the performance with existing approaches in terms of time taken for the search process and the component coverage based test adequacy criterion to ensure quality of the software.


2005 ◽  
pp. 56-71
Author(s):  
A. Verenikin

The author uses microeconomic approach to compare optimal price, input and output quantity setting for a firm in a competitive industry and with market power. Revealed profit maximization principle is applied to draw a conclusion that production technology plays a fundamental role in cost determination for a monopoly and a competitive firm. Production technology is a key factor that promotes both centrifugal, contending and centripetal, integrative trends in a modern economy.


Students have different abilities, skills and background and thus the corresponding learning process is different. Moreover, the teacher strategy, the available equipment, etc, play a crucial role in the learning curve. Scaffolding is a learning approach for dynamically supporting student during the learning process. The final goal is to restrict this support and to increase the student autonomy. This paper presents a basic idea for developing a dynamic multi-agent computer based scaffolding framework. Multi-agent technology constitutes an adaptive approach regarding the needed scaffolding. This paper also shows the modelling approach regarding the multi agent concepts. Finally, some theoretical indicative learning paths for different students are presented.


10.29007/z15j ◽  
2020 ◽  
Author(s):  
Yakoub Salhi

Controlling access to knowledge plays a crucial role in many multi-agent systems. In- deed, it is related to different central aspects in interactions among agents such as privacy, security, and cooperation. In this paper, we propose a framework for dealing with access to knowledge that is based on the inference process in classical propositional logic: an agent has access to every piece of knowledge that can be derived from the available knowledge using the classical inference process. We first introduce a basic problem in which an agent has to hide pieces of knowledge, and we show that this problem can be solved through the computation of maximal consistent subsets. In the same way, we also propose a coun- terpart of the previous problem in which an agent has to share pieces of knowledge, and we show that this problem can be solved through the computation of minimal inconsis- tent subsets. Then, we propose a generalization of the previous problem where an agent has to share pieces of knowledge and hide at the same time others. In this context, we introduce several concepts that allow capturing interesting aspects. Finally, we propose a weight-based approach by associating integers with the pieces of knowledge that have to be shared or hidden.


Sign in / Sign up

Export Citation Format

Share Document