scholarly journals Determination of Cr Density in the Active Phase of a High-current Vacuum Arcs

2017 ◽  
Vol 4 (2) ◽  
pp. 190-193 ◽  
Author(s):  
S. Gortschakow ◽  
A. Khakpour ◽  
S. Popov ◽  
St. Franke ◽  
R. Methling ◽  
...  

Melting and evaporation of the anode surface strongly influence the interruption capability of vacuum circuit breakers, because they lead to injection of atomic vapour into the inter-electrode gap. Determination of the vapour density and its dynamics with respect to different anode phenomena is therefore of great importance. Results of Cr density measurements in a high-current vacuum arc by using broadband absorption spectroscopy are presented. The vapour density of atomic Cr is determined after the formation of anode spots as well as close to the current zero. Cr I resonance lines at 425.43 nm have been used for the analysis. An AC current pulse with maximum value of 7 kA and a frequency of 100 Hz is applied to a vacuum arc between two cylindrical butt electrodes made of CuCr7525 with a diameter of 10 mm. The high-current anode modes are observed by means of high-speed camera imaging. The temporal evolution of the Cr ground state density is presented and discussed.

2007 ◽  
Vol 45 (4) ◽  
pp. 446-455 ◽  
Author(s):  
Ya. I. Londer ◽  
K. N. Ul’yanov

2017 ◽  
Vol 4 (3) ◽  
pp. 249-252
Author(s):  
A. Khakpour ◽  
R. Methling ◽  
St. Franke ◽  
S. Gortschakow ◽  
D. Uhrlandt

A vacuum interrupter reaches its interruption limit once high-current anode phenomena occur. High-current anode modes lead to an increase of the anode surface temperature and an increased generation of metal vapor, which may result in a weakening of the dielectric recovery strength after current zero. In this work, different discharge modes in a vacuum arc for AC 50 Hz including diffuse, footpoint, anode spot type 1 and type 2, and anode plume are investigated. Electrodes made of CuCr7525 with diameter of 10 mm are used. The final gap length is about 20 mm. Time and space resolved optical emission spectroscopy is used to examine the temporal and spatial distribution of atomic and ionic copper lines. The distribution of atomic and ionic lines parallel and perpendicular to the anode surface is investigated. Radiator density is also determined for CuI, CuII, and CuIII near the anode surface.


2019 ◽  
Vol 125 (13) ◽  
pp. 133301 ◽  
Author(s):  
A. Khakpour ◽  
S. Gortschakow ◽  
St. Franke ◽  
R. Methling ◽  
S. Popov ◽  
...  
Keyword(s):  

2021 ◽  
Vol 2064 (1) ◽  
pp. 012019
Author(s):  
A G Rousskikh ◽  
A S Zhigalin ◽  
V I Oreshkin ◽  
P Artyomov

Abstract The work is devoted to the study of the high-current vacuum arc discharge characteristics under conditions of a limited cross-section of the plasma flow. The experiments were carried out on the IMRI-5 setup with a sinusoidal arc current amplitude of 300–350 kA and a rise time of 500 ns. Aluminum rods with diameters from 3 to 7 mm were used as a cathode. The plasma flow was formed in a channel whose diameter was equal to that of the cathode. The features of the formation of a plasma jet with various configurations of the used plasma gun are described. The electrophysical parameters of the arc discharge are presented. Theoretical estimates of the voltage drop across the high-current arc during the outflow of a plasma flow through holes with a limited diameter are provided.


Energies ◽  
2020 ◽  
Vol 13 (21) ◽  
pp. 5596
Author(s):  
Sergey Gortschakow ◽  
Steffen Franke ◽  
Ralf Methling ◽  
Diego Gonzalez ◽  
Andreas Lawall ◽  
...  

The influence of initiation behavior of the drawn arc on the arc motion, on arc characteristics during the active phase, as well as on the post-arc parameters, was studied. The study was focused on arc dynamics, determination of the anode surface temperature after current interruption, and diagnostics of metal vapor density after current zero crossing. Different optical diagnostics, namely high-speed camera video enhanced by narrow-band optical filters, near infrared spectroscopy, and optical absorption spectroscopy was applied. The initiation behavior of the drawn arc had a clear influence on arc parameters. Higher local electrode temperature occurs in case of the electrodes with ignition point near the outer electrode boundary. This further causes an enhanced density of chromium vapor, even in cases with lower arc duration. The results of this study are important for design development of switching RMF contacts for future green energy applications.


Sign in / Sign up

Export Citation Format

Share Document