plasma gun
Recently Published Documents


TOTAL DOCUMENTS

308
(FIVE YEARS 24)

H-INDEX

21
(FIVE YEARS 2)

2022 ◽  
pp. 101111
Author(s):  
A.M. Dmitriev ◽  
A.G. Razdobarin ◽  
L.A. Snigirev ◽  
D.I. Elets ◽  
I.M. Bukreev ◽  
...  
Keyword(s):  

2021 ◽  
Vol 2064 (1) ◽  
pp. 012005
Author(s):  
A S Zhigalin ◽  
A G Rousskikh ◽  
V I Oreshkin ◽  
A P Artyomov

Abstract In this work, we present experimental results on measuring the velocity of vacuum arc discharge plasma expansion. In the experiments, two designs of plasma guns were used. In the first version, the end of the arc discharge cathode was located below the plane of the anode, and the surface of the insulator separating them was parallel to the axis of symmetry of the plasma gun. In this design, the arc discharge plasma escapes the anode through a hole, the diameter of which coincides with the diameter of the cathode. In the second variant, the plane of the end face of the arc discharge cathode coincided with the plane of the anode, and the surface of the insulator separating them was located perpendicular to the axis of symmetry of the plasma gun. To obtain an image of plasma in the optical range, an FER-7 optical streak camera was used. Based on the results obtained, it can be concluded that the expansion velocity of the plasma of a high-current vacuum arc discharge does not depend on the design of the guns considered in this experiment.


2021 ◽  
Vol 2064 (1) ◽  
pp. 012030
Author(s):  
D L Shmelev ◽  
S A Chaikovsky ◽  
I V Uimanov

Abstract This paper discusses the issues of a possible change of the type of cathode attachment of high-current vacuum arcs (HCVA) with an average cathode current density of more than 105 A/cm2. This type of HCVA is used as pumping plasma gun in experiments with plasma puff z-pinches. These experiments showed that the measured linear mass of the HCVA plasma jet is much higher (by a factor of 10 or more) than the expected mass, which can be obtained from the assumption that cathode attachment occurs only through a multitude of cathode spots emitting supersonic plasma jets. It is shown that in HCVA of the type under consideration, at some time instant there are two types of cathode attachments - cathode spots and thermionic erosion attachment (TEA). It can be said that HCVA of this type have a hybrid cathodic attachment. Unlike cathode spots, TEA produces a subsonic plasma flow, which contributes to an increase in the linear mass of the HCVA plasma jet.


2021 ◽  
Vol 2064 (1) ◽  
pp. 012019
Author(s):  
A G Rousskikh ◽  
A S Zhigalin ◽  
V I Oreshkin ◽  
P Artyomov

Abstract The work is devoted to the study of the high-current vacuum arc discharge characteristics under conditions of a limited cross-section of the plasma flow. The experiments were carried out on the IMRI-5 setup with a sinusoidal arc current amplitude of 300–350 kA and a rise time of 500 ns. Aluminum rods with diameters from 3 to 7 mm were used as a cathode. The plasma flow was formed in a channel whose diameter was equal to that of the cathode. The features of the formation of a plasma jet with various configurations of the used plasma gun are described. The electrophysical parameters of the arc discharge are presented. Theoretical estimates of the voltage drop across the high-current arc during the outflow of a plasma flow through holes with a limited diameter are provided.


2021 ◽  
Vol 2064 (1) ◽  
pp. 012016
Author(s):  
A P Artyomov ◽  
A G Rousskikh ◽  
A S Zhigalin ◽  
I A Rousskikh ◽  
A G Tyukavkin ◽  
...  

Abstract The aim of this work was to obtain magnitude quantitative estimates of the “closed-type” plasma gun aluminum electrodes erosion that occurs during the course of a high-current vacuum arc discharge. The experimental setup consisted of two current generators. The first generator capable of generating a current with an amplitude of up to 450 kA and a rise time of 500 ns was used as a current source for a plasma gun. The second one was used as an X-ray radiograph to visualize the object under study in the soft X-ray range (hv ≈ 0.5–3 keV). Quantitative distributions of the plasma linear mass are obtained both along the radius and along the length of the jet at different times. It was shown that the erosion properties of the electrode material are related to the current characteristics of the arc discharge current.


2021 ◽  
Vol 47 (9) ◽  
pp. 938-946
Author(s):  
I. A. Ivanov ◽  
V. I. Batkin ◽  
A. V. Burdakov ◽  
K. N. Kuklin ◽  
K. I. Mekler ◽  
...  
Keyword(s):  

2021 ◽  
Vol 648 ◽  
pp. A81
Author(s):  
K. Burdonov ◽  
R. Bonito ◽  
T. Giannini ◽  
N. Aidakina ◽  
C. Argiroffi ◽  
...  

Aims. EXor-type objects are protostars that display powerful UV-optical outbursts caused by intermittent and powerful events of magnetospheric accretion. These objects are not yet well investigated and are quite difficult to characterize. Several parameters, such as plasma stream velocities, characteristic densities, and temperatures, can be retrieved from present observations. As of yet, however, there is no information about the magnetic field values and the exact underlying accretion scenario is also under discussion. Methods. We use laboratory plasmas, created by a high power laser impacting a solid target or by a plasma gun injector, and make these plasmas propagate perpendicularly to a strong external magnetic field. The propagating plasmas are found to be well scaled to the presently inferred parameters of EXor-type accretion event, thus allowing us to study the behaviour of such episodic accretion processes in scaled conditions. Results. We propose a scenario of additional matter accretion in the equatorial plane, which claims to explain the increased accretion rates of the EXor objects, supported by the experimental demonstration of effective plasma propagation across the magnetic field. In particular, our laboratory investigation allows us to determine that the field strength in the accretion stream of EXor objects, in a position intermediate between the truncation radius and the stellar surface, should be of the order of 100 G. This, in turn, suggests a field strength of a few kilogausses on the stellar surface, which is similar to values inferred from observations of classical T Tauri stars.


2021 ◽  
Vol 87 (2) ◽  
Author(s):  
Ivan A. Ivanov ◽  
V. O. Ustyuzhanin ◽  
A. V. Sudnikov ◽  
A. Inzhevatkina

A plasma gun for forming a plasma stream in the open magnetic mirror trap with additional helicoidal field SMOLA is described. The plasma gun is an axisymmetric system with a planar circular hot cathode based on lanthanum hexaboride and a hollow copper anode. The two planar coils are located around the plasma source and create a magnetic field of up to 200 mT. The magnetic field forms the magnetron configuration of the discharge and provides a radial electric insulation. The source typically operates with a discharge current of up to 350 A in hydrogen. Plasma parameters in the SMOLA device are Ti ~ 5 eV, Te ~ 5–40 eV and ni ~ (0.1–1)  × 1019 m−3. Helium plasma can also be created. The plasma properties depend on the whole group of initial technical parameters: the cathode temperature, the feeding gas flow, the anode-cathode supply voltage and the magnitude of the cathode magnetic insulation.


2021 ◽  
Vol 99 (6) ◽  
pp. 7-7
Author(s):  
Prachi Patel, special to C&EN
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document