scholarly journals How Should the Discrete Element Method Be Applied in Industrial Systems?: A Review

2016 ◽  
Vol 33 (0) ◽  
pp. 169-178 ◽  
Author(s):  
Mikio Sakai
Author(s):  
Yusuke Shigeto ◽  
Mikio Sakai ◽  
Shin Mizutani ◽  
Seiichi Koshizuka ◽  
Shuji Matsusaka

Large amount of particles are used in the industrial systems. Numerical analyses of these systems are expected to reduce designing cost. However the numerical analysis of powder is not used practically, because it requires high calculation cost which grows up with the number of particles. Besides, there are memory consumption problem which is required for calculation space. In this paper, the parallel simulation techniques of the Discrete Element Method (DEM) on multi-core processors are described. In the present study, it is shown that the algorithm enables all the processes of the DEM to be executed parallel. Moreover, a new algorithm which makes the memory space usage effectively and accelerates the calculation speed is proposed for multi-thread parallel computing of the DEM. In the present study, the memory space usage is shown to be reduced drastically by introducing this algorithm. In addition, the coarse grain model which emulates original particles with less calculation particles is applied in order to reduce calculation cost. For the practical usage of the DEM in industries, the simulation is performed in a large-scale powder system which possesses a complicated drive unit. In the current study, it is shown that the large scale DEM simulation of practical systems is enabled to be executed by our proposing algorithms.


TAPPI Journal ◽  
2019 ◽  
Vol 18 (2) ◽  
pp. 101-108
Author(s):  
Daniel Varney ◽  
Douglas Bousfield

Cracking at the fold is a serious issue for many grades of coated paper and coated board. Some recent work has suggested methods to minimize this problem by using two or more coating layers of different properties. A discrete element method (DEM) has been used to model deformation events for single layer coating systems such as in-plain and out-of-plain tension, three-point bending, and a novel moving force picking simulation, but nothing has been reported related to multiple coating layers. In this paper, a DEM model has been expanded to predict the three-point bending response of a two-layer system. The main factors evaluated include the use of different binder systems in each layer and the ratio of the bottom and top layer weights. As in the past, the properties of the binder and the binder concentration are input parameters. The model can predict crack formation that is a function of these two sets of factors. In addition, the model can predict the flexural modulus, the maximum flexural stress, and the strain-at-failure. The predictions are qualitatively compared with experimental results reported in the literature.


2021 ◽  
Vol 910 ◽  
Author(s):  
Yiyang Jiang ◽  
Yu Guo ◽  
Zhaosheng Yu ◽  
Xia Hua ◽  
Jianzhong Lin ◽  
...  

Abstract


2021 ◽  
pp. 014459872110135
Author(s):  
Zhen Tian ◽  
Shuangxi Jing ◽  
Lijuan Zhao ◽  
Wei Liu ◽  
Shan Gao

The drum is the working mechanism of the coal shearer, and the coal loading performance of the drum is very important for the efficient and safe production of coal mine. In order to study the coal loading performance of the shearer drum, a discrete element model of coupling the drum and coal wall was established by combining the results of the coal property determination and the discrete element method. The movement of coal particles and the mass distribution in different areas were obtained, and the coal particle velocity and coal loading rate were analyzed under the conditions of different helix angles, rotation speeds, traction speeds and cutting depths. The results show that with the increase of helix angle, the coal loading first increases and then decreases; with the increase of cutting depth and traction speed, the coal loading rate decreases; the increase of rotation speed can improve the coal loading performance of drum to a certain extent. The research results show that the discrete element numerical simulation can accurately reflect the coal loading process of the shearer drum, which provides a more convenient, fast and low-cost method for the structural design of shearer drum and the improvement of coal loading performance.


Sign in / Sign up

Export Citation Format

Share Document