Study on the Particle Behavior in a Screw Conveyer System by the Discrete Element Method

Author(s):  
Yusuke Shigeto ◽  
Mikio Sakai ◽  
Shin Mizutani ◽  
Seiichi Koshizuka ◽  
Shuji Matsusaka

Large amount of particles are used in the industrial systems. Numerical analyses of these systems are expected to reduce designing cost. However the numerical analysis of powder is not used practically, because it requires high calculation cost which grows up with the number of particles. Besides, there are memory consumption problem which is required for calculation space. In this paper, the parallel simulation techniques of the Discrete Element Method (DEM) on multi-core processors are described. In the present study, it is shown that the algorithm enables all the processes of the DEM to be executed parallel. Moreover, a new algorithm which makes the memory space usage effectively and accelerates the calculation speed is proposed for multi-thread parallel computing of the DEM. In the present study, the memory space usage is shown to be reduced drastically by introducing this algorithm. In addition, the coarse grain model which emulates original particles with less calculation particles is applied in order to reduce calculation cost. For the practical usage of the DEM in industries, the simulation is performed in a large-scale powder system which possesses a complicated drive unit. In the current study, it is shown that the large scale DEM simulation of practical systems is enabled to be executed by our proposing algorithms.

2013 ◽  
Vol 312 ◽  
pp. 101-105
Author(s):  
Fu Sheng Mu ◽  
Hui Li ◽  
Xing Xue Li ◽  
Hong Zhi Xiong

In order to analyze the force condition and crushing power of crusher teeth plate, the discrete element method models of jaw crusher and double-cavity jaw crusher are set up respectively using EDEM, a kind of software for discrete element analysis. Meanwhile, the working process, the loading force on the teeth plate and crushing power are simulated. The results show that: the rationality of the DEM simulation is declared, and the crushing process of the particles is also shown intuitively. The loading force condition and the crushing power of the moving jaw teeth plate serve as basis for its abrasion and energy consumption respectively.


2016 ◽  
Vol 287 ◽  
pp. 131-138 ◽  
Author(s):  
D. Kretz ◽  
S. Callau-Monje ◽  
M. Hitschler ◽  
A. Hien ◽  
M. Raedle ◽  
...  

2021 ◽  
Vol 191 ◽  
pp. 106538
Author(s):  
Sher Ali Shaikh ◽  
Yaoming Li ◽  
Zheng Ma ◽  
Farman Ali Chandio ◽  
Mazhar Hussain Tunio ◽  
...  

2018 ◽  
Vol 336 ◽  
pp. 415-425 ◽  
Author(s):  
Fuhai Yu ◽  
Shuai Zhang ◽  
Guangzheng Zhou ◽  
Yun Zhang ◽  
Wei Ge

2008 ◽  
Vol 131 (2) ◽  
Author(s):  
H. Kruggel-Emden ◽  
S. Wirtz ◽  
V. Scherer

Several processes in nature as well as many industrial applications involve static or dynamic granular materials. Granulates can adopt solid-, liquid-, or gaslike states and thereby reveal intriguing physical phenomena not observable in its versatility for any other form of matter. The frequent occurrence of phase transitions and the related characteristics thereby strongly affect their processing quality and economics. This situation demands for prediction methods for the behavior of granulates. In this context simulations provide a feasible alternative to experimental investigations. Several different simulation approaches are applicable to granular materials. The time-driven discrete element method turns out to be not only the most complex but also the most general simulation approach. Discrete element simulations have been used in a wide variety of scientific fields for more than 30 years. With the tremendous increase in available computer power, especially in the past years, the method is more and more developing to the state of the art simulation technique for granular materials not only in science but also in industrial applications. Several commercial software packages utilizing the time-driven discrete element method have emerged and are becoming more and more popular within the engineering community. Despite the long time of usage of the time-driven discrete element method, model advances derived and theoretical and experimental studies performed in the different branches of application lack harmonization. They thereby provide potential for improvements. Therefore, the scope of this paper is a review of methods and models for contact forces based on theoretical considerations and experimental data from literature. Particles considered are of spherical shape. Through model advances it is intended to contribute to a general enhancement of simulation techniques, which help improve products and the design of the related equipment.


Sign in / Sign up

Export Citation Format

Share Document