Flexural Fatigue Performance of Steel Fiber Reinforced Concrete--Influence of Fiber Content, Aspect Ratio, and Type

10.14359/1875 ◽  
1991 ◽  
Vol 88 (4) ◽  
2014 ◽  
Vol 1055 ◽  
pp. 23-26
Author(s):  
Can Xu

In the original to remove steel and steel fiber reinforced concrete coarse aggregate in quartz powder and a small amount of activator, can boost steel fiber content, and its application in construction makes it more convenient, but how the penetration resistance works is not particularly clear. Through the penetration resistance experiment, found that when joined the SF and BF, RPC can still keep complete even after three times by penetration ,indicating the good performance of penetration resistance.


2008 ◽  
Vol 385-387 ◽  
pp. 673-676
Author(s):  
Ji Wang ◽  
Ming Zhong Zhang ◽  
Xiao Chun Fan

In order to study the damage evolution law for layered fiber reinforced concrete subjected to flexural fatigue, the flexural fatigue tests were carried out on both layered steel fiber reinforced concrete(LSFRC) and layered hybrid fiber reinforced concrete(LHFRC) beams of which the type of steel fiber was uniform on the same concrete mix. At the same time the flexural fatigue tests with original concrete(OC) were carried out. Based on the experiments, both flexural fatigue life and damage characteristic of LSFRC LHFRC and OC were compared and analyzed. The results indicated that the fatigue life of LHFRC was a little larger than that of LSFRC under the stress level, which was more than an order of magnitude of OC. And the fatigue distortion of LSFRC, LHFRC and OC were similar. They all followed three-phase law. However, the proportion of every phase was different, which proved that layered steel fibers and polypropylene fibers could effectively restrain the degradation of concrete.


Sign in / Sign up

Export Citation Format

Share Document