Penetration Resistance Research of Fiber Reinforced RPC

2014 ◽  
Vol 1055 ◽  
pp. 23-26
Author(s):  
Can Xu

In the original to remove steel and steel fiber reinforced concrete coarse aggregate in quartz powder and a small amount of activator, can boost steel fiber content, and its application in construction makes it more convenient, but how the penetration resistance works is not particularly clear. Through the penetration resistance experiment, found that when joined the SF and BF, RPC can still keep complete even after three times by penetration ,indicating the good performance of penetration resistance.

Materials ◽  
2020 ◽  
Vol 13 (22) ◽  
pp. 5202
Author(s):  
Mohammad Iqbal Khan ◽  
Wasim Abbass ◽  
Mohammad Alrubaidi ◽  
Fahad K. Alqahtani

High-strength concrete is used to provide quality control for concrete structures, yet it has the drawback of brittleness. The inclusion of fibers improves the ductility of concrete but negatively affects the fresh properties of fiber-reinforced concrete. The effects of different fine to coarse aggregate ratios on the fresh and hardened properties of steel fiber reinforced concrete were investigated in this study. Mixtures were prepared with various fine to coarse aggregate (FA/CA) ratios incorporating 1% steel fiber content (by volume) at constant water to cement ratio. The workability, unit weight, and temperature of the concrete in the fresh state, and the mechanical properties of steel-fiber-reinforced concrete (SFRC) were investigated. The inclusion of fiber in concrete influenced the mobility of concrete in the fresh state by acting as a barrier to the movement of coarse aggregate. It was observed that the concrete with an FA/CA ratio above 0.8 showed better flowability in the fresh state, whilst an above 0.9 FA/CA ratio requires excessive superplasticizer to maintain the flowability of the mixtures. The compressive and flexural strength of SFRC increased with an increase in the FA/CA ratio by around 10% and 28%, respectively. Experimental values of compressive strength and flexural strength showed good agreement, however, modulus of elasticity demonstrated slightly higher values. The experimentally obtained measurements of the mechanical properties of SFRC conformed reasonably well with the available existing prediction equations, and further enabled establishing predictive isoresponse interactive equations within the scope of the investigation domain.


2018 ◽  
Vol 9 (2) ◽  
pp. 1
Author(s):  
Mustaqqim Abdul Rahim ◽  
Omi Yanti Pohan ◽  
Mohd Badrul Hisyam Ab Manaf ◽  
Ahmad Nur Aizat Ahmad ◽  
Shahiron Shahidan ◽  
...  

Steel is one of the fibers used in fiber reinforced concrete technology. Steel fibers in concrete help to improve flexural  strength and  crack  resistance. Today,  there  are  critical  shortages of  natural  resources. In  this  research,  waste concrete is being used to produce recycled aggregate. The Recycled Coarse Aggregate (RCA) is partially replaced with the natural coarse aggregate (NCA) in concrete to analyze the mechanical properties of steel fiber reinforced concrete (SFRC). Several tests were conducted, such as compression and flexural tests. Five batches (A, B, C, D and E) of concrete cube and prism samples with different proportions of RCA (0%, 25%, 50%, 75% & 100%) and 1.5% volume fraction of steel fiber were tested, together with one control sample which used 100% NCA and 0% volume fraction of steel fiber. As a result, the control sample achieved 27.32 MPa in compression strength and 0.90 MPa for flexural strength while batch A managed to achieve 48.60 MPa and 1.10  MPa respectively. The cube and prism samples of all batches (A, B, C, D, E) showed decreasing compressive and flexural strength with increasing proportion of RCA in the concrete. Four samples fully achieved more than 20 MPa of compression strength and optimum flexural strength.


2018 ◽  
Vol 768 ◽  
pp. 326-330
Author(s):  
Bo Chen ◽  
Li Ping Guo ◽  
Wei Sun ◽  
Cong Ding

To evaluate the bending performance of a steel fiber-reinforced concrete shield segment, bending testing was conducted on prism specimens and full-scale segments with 30 kg/m3and 40 kg/m3steel fiber. The results show that, with increasing fiber content, the ultimate and equivalent flexural strengths increase, while the flexural toughness of the prism concrete specimen increases by approximately 15%. With increasing fiber content, the flexural capacity of the shield tunnel segment increases, the peak load increases by 24%, the crack number increases, and the average crack width decreases. During bending tests, the steel fiber-reinforced concrete segment shows remarkable characteristics of strain hardening and multiple cracking. The embedded parts reduce the cross-sectional area and cause stress concentration in the mid-span; therefore, the main crack form in this region.


2021 ◽  
Author(s):  
Xiliang Liu ◽  
Feiyue Sun ◽  
Fuli Kong ◽  
Jiaqi GUO

Abstract Based on axial pull-out performance tests of anchor and shotcrete support system with three types of plates and two kinds of shotcretes (plain and steel fiber reinforced concrete) conducted by use of the multi-functional testing system. The mechanical behavior of the anchor and shotcrete support system with the different plate and shotcrete such as the pull-out performance of support system, deformation and failure properties of shotcrete was studied and analyzed. Experimental results showed that the relationship curves between elongation and drawing force has three stages, which are elastic, yielding and strengthening. Different plate types have obvious influence on the tensile stiffness during the elastic stage. The steel fiber reinforced concrete spray layer can improve the yield strength of rockbolt under the coupling effect by the support system. The strain at the interface between the initial shotcrete layer and surrounding rock mass is greater than that of the external surface of the resprayed shotcrete layer, though they are equal far away from the rockbolt hole. The shotcrete strain values of steel fiber reinforced concrete is lower than that of plain concrete, and the shotcrete strain values decreases with the improvement of steel fiber content. For shotcrete strain values on the same position, the higher they are the steel fiber content, the lower their strain will be. The failure of plain shotcrete usually begins around of rockbolt hole, when the interfacial stress between the initial shotcrete layer and surround rock is higher than that in the initial shotcrete layer and resprayed shotcrete layer. The steel fiber can effectively improves the toughness, anti-cracking performance and prevent fracture of shotcrete from failure properties.


Sign in / Sign up

Export Citation Format

Share Document