Precast Seismic Bridge Column Connection Utilizing Ultra-High-Performance Concrete Lap Splice

2020 ◽  
Vol 117 (1) ◽  
Author(s):  
Titchenda Chan ◽  
Kevin R. Mackie ◽  
Zachary B. Haber
2020 ◽  
pp. 136943322096845
Author(s):  
Rui Hu ◽  
Zhi Fang ◽  
Caijun Shi ◽  
Brahim Benmokrane ◽  
Jie Su

Ultra-high performance concrete (UHPC) is a type of cementitious composite, and demonstrates very high compressive strength and good ductility. The favorable ductility and energy dissipation capacity of UHPC material make it possible to achieve excellent seismic performance in all kinds of structural members. The paper reviewed the recent progress on the seismic behavior of UHPC members, including flexural members (beams and plates), compressive members (columns and shear walls), joints (beam-column joints and plate-column joints), strengthening (strengthening for columns, shear walls and joints) and connections (bar lap splice and grout). A series of potential future researches on the seismic behavior of UHPC members were finally suggested for promotion of the application of UHPC in civil engineering.


PCI Journal ◽  
2020 ◽  
Vol 65 (6) ◽  
pp. 35-61
Author(s):  
Chungwook Sim ◽  
Maher Tadros ◽  
David Gee ◽  
Micheal Asaad

Ultra-high-performance concrete (UHPC) is a special concrete mixture with outstanding mechanical and durability characteristics. It is a mixture of portland cement, supplementary cementitious materials, sand, and high-strength, high-aspect-ratio microfibers. In this paper, the authors propose flexural design guidelines for precast, prestressed concrete members made with concrete mixtures developed by precasters to meet minimum specific characteristics qualifying it to be called PCI-UHPC. Minimum specified cylinder strength is 10 ksi (69 MPa) at prestress release and 18 ksi (124 MPa) at the time the member is placed in service, typically 28 days. Minimum flexural cracking and tensile strengths of 1.5 and 2 ksi (10 and 14 MPa), respectively, according to ASTM C1609 testing specifications are required. In addition, strain-hardening and ductility requirements are specified. Tensile properties are shown to be more important for structural optimization than cylinder strength. Both building and bridge products are considered because the paper is focused on capacity rather than demand. Both service limit state and strength limit state are covered. When the contribution of fibers to capacity should be included and when they may be ignored is shown. It is further shown that the traditional equivalent rectangular stress block in compression can still be used to produce satisfactory results in prestressed concrete members. A spreadsheet workbook is offered online as a design tool. It is valid for multilayers of concrete of different strengths, rows of reinforcing bars of different grades, and prestressing strands. It produces moment-curvature diagrams and flexural capacity at ultimate strain. A fully worked-out example of a 250 ft (76.2 m) span decked I-beam of optimized shape is given.


Sign in / Sign up

Export Citation Format

Share Document