Cyclic Behavior of High-Strength Fiber-Reinforced Concrete Columns under High Axial Loading Level

2021 ◽  
Vol 118 (6) ◽  
2018 ◽  
Vol 22 (2) ◽  
pp. 519-534 ◽  
Author(s):  
Pooya Alaee ◽  
Yoshiharu Sato ◽  
Bing Li

A unique reinforced concrete column design method which aims to improve the ductile behavior of reinforced concrete columns by utilizing various steel grades for longitudinal reinforcements is evaluated in this article. Six large-scale reinforced concrete columns were tested, with the columns subjected to axial load and cyclic forces under reversed bending. The parameters varied in the test program including the axial loading level and the ratio and strength of longitudinal steel reinforcement. It was found from the test results that utilizing longitudinal high-strength steel reinforcement by the ratio of 30%, 50%, and 100% of the total longitudinal reinforcement in a column section will increase the lateral loading drift capacity by 18%, 26%, and 55% on average, respectively. Parametric studies via nonlinear finite-element approach were performed to study the influence of various design parameters on the ultimate drift capacity of reinforced concrete columns. The correlation between the ultimate drift capacity and the confinement level, the axial loading level, and the ratio and grade of longitudinal high-strength reinforcing bars was investigated. Design charts for various ultimate drift levels in terms of other design parameters were developed.


2008 ◽  
Vol 64 (3) ◽  
pp. 435-448
Author(s):  
Tetsuo KAWAGUCHI ◽  
Makoto KATAGIRI ◽  
Kazuyoshi SHIRAI ◽  
Junichiro NIWA

2012 ◽  
Vol 18 (31) ◽  
pp. 222-229
Author(s):  
Chunyakom Sivaleepunth ◽  
Toshimichi Ichinomiya ◽  
Shinichi Yamanobe ◽  
Tetsuya Kono ◽  
Naoki Sogabe ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document