A Study on Hydrological Rainfall Adjustment using Machine Learning and Probability Matching Method during Heavy Rainfall Season

2020 ◽  
Vol 15 (4) ◽  
pp. 257-267
Author(s):  
Chul-Min Ko ◽  
◽  
Yeong Yun Jeong ◽  
Yong-Keun Ji ◽  
Young-Mi Lee ◽  
...  
Atmosphere ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 111 ◽  
Author(s):  
Chul-Min Ko ◽  
Yeong Yun Jeong ◽  
Young-Mi Lee ◽  
Byung-Sik Kim

This study aimed to enhance the accuracy of extreme rainfall forecast, using a machine learning technique for forecasting hydrological impact. In this study, machine learning with XGBoost technique was applied for correcting the quantitative precipitation forecast (QPF) provided by the Korea Meteorological Administration (KMA) to develop a hydrological quantitative precipitation forecast (HQPF) for flood inundation modeling. The performance of machine learning techniques for HQPF production was evaluated with a focus on two cases: one for heavy rainfall events in Seoul and the other for heavy rainfall accompanied by Typhoon Kong-rey (1825). This study calculated the well-known statistical metrics to compare the error derived from QPF-based rainfall and HQPF-based rainfall against the observational data from the four sites. For the heavy rainfall case in Seoul, the mean absolute errors (MAE) of the four sites, i.e., Nowon, Jungnang, Dobong, and Gangnam, were 18.6 mm/3 h, 19.4 mm/3 h, 48.7 mm/3 h, and 19.1 mm/3 h for QPF and 13.6 mm/3 h, 14.2 mm/3 h, 33.3 mm/3 h, and 12.0 mm/3 h for HQPF, respectively. These results clearly indicate that the machine learning technique is able to improve the forecasting performance for localized rainfall. In addition, the HQPF-based rainfall shows better performance in capturing the peak rainfall amount and spatial pattern. Therefore, it is considered that the HQPF can be helpful to improve the accuracy of intense rainfall forecast, which is subsequently beneficial for forecasting floods and their hydrological impacts.


2021 ◽  
Author(s):  
Eva van der Kooij ◽  
Marc Schleiss ◽  
Riccardo Taormina ◽  
Francesco Fioranelli ◽  
Dorien Lugt ◽  
...  

<p>Accurate short-term forecasts, also known as nowcasts, of heavy precipitation are desirable for creating early warning systems for extreme weather and its consequences, e.g. urban flooding. In this research, we explore the use of machine learning for short-term prediction of heavy rainfall showers in the Netherlands.</p><p>We assess the performance of a recurrent, convolutional neural network (TrajGRU) with lead times of 0 to 2 hours. The network is trained on a 13-year archive of radar images with 5-min temporal and 1-km spatial resolution from the precipitation radars of the Royal Netherlands Meteorological Institute (KNMI). We aim to train the model to predict the formation and dissipation of dynamic, heavy, localized rain events, a task for which traditional Lagrangian nowcasting methods still come up short.</p><p>We report on different ways to optimize predictive performance for heavy rainfall intensities through several experiments. The large dataset available provides many possible configurations for training. To focus on heavy rainfall intensities, we use different subsets of this dataset through using different conditions for event selection and varying the ratio of light and heavy precipitation events present in the training data set and change the loss function used to train the model.</p><p>To assess the performance of the model, we compare our method to current state-of-the-art Lagrangian nowcasting system from the pySTEPS library, like S-PROG, a deterministic approximation of an ensemble mean forecast. The results of the experiments are used to discuss the pros and cons of machine-learning based methods for precipitation nowcasting and possible ways to further increase performance.</p>


2018 ◽  
Vol 2018 ◽  
pp. 1-17 ◽  
Author(s):  
Kantamla Biseke Mafuru ◽  
Tan Guirong

This study analyses the spatial and temporal distribution of heavy rainfall events (HREs) and its associated circulation anomalies over Tanzania during March to May (MAM) rainfall season of 1980–2010. A total of 822 HREs were revealed, concentrated over the northern sector (NS) of the country. Years with anomalous HREs are associated with low-level westerly convergence, advection of moisture from both the Indian Ocean and Congo basin, an upper warm temperature anomaly (UWTA), intensified and well-positioned Intertropical Convergence Zone (ITCZ), and pronounced rising motion since the ascending limb of the Walker type of circulation is centered over Tanzania. The analysis of the UWTA in this study has brought a key factor in exploring the possible likely cause and improved early warning system for the HREs during the MAM rainfall season in Tanzania. Making use of the thermal wind equation and the velocity divergent form of the continuity equation (DFCE), we found that the UWTA results into an upper-level horizontal wind divergence which significantly accelerates vertical ascent, deepening the surface low pressure for an enhanced convective process and HREs formation.


2021 ◽  
Vol 130 (4) ◽  
Author(s):  
Kandula V Subrahmanyam ◽  
C Ramsenthil ◽  
A Girach Imran ◽  
Aniket Chakravorty ◽  
R Sreedhar ◽  
...  

1994 ◽  
Vol 33 (6) ◽  
pp. 682-693 ◽  
Author(s):  
Daniel Rosenfeld ◽  
David B. Wolff ◽  
Eyal Amitai

2021 ◽  
Vol 13 (9) ◽  
pp. 1819
Author(s):  
Tianjun Qi ◽  
Yan Zhao ◽  
Xingmin Meng ◽  
Guan Chen ◽  
Tom Dijkstra

Groups of landslides induced by heavy rainfall are widely distributed on a global basis and they usually result in major losses of human life and economic damage. However, compared with landslides induced by earthquakes, inventories of landslides induced by heavy rainfall are much less common. In this study we used high-precision remote sensing images before and after continuous heavy rainfall in southern Tianshui, China, from 20 June to 25 July 2013, to produce an inventory of 14,397 shallow landslides. Based on the results of landslide inventory, we utilized machine learning and the geographic information system (GIS) to map landslide susceptibility in this area and evaluated the relative weight of various factors affecting landslide development. First, 18 variables related to geomorphic conditions, slope material, geological conditions, and human activities were selected through collinearity analysis; second, 21 selected machine learning models were trained and optimized in the Python environment to evaluate the susceptibility of landslides. The results showed that the ExtraTrees model was the most effective for landslide susceptibility assessment, with an accuracy of 0.91. This predictive ability means that our landslide susceptibility results can be used in the implementation of landslide prevention and mitigation measures in the region. Analysis of the importance of the factors showed that the contribution of slope aspect (SA) was significantly higher than that of the other factors, followed by planar curvature (PLC), distance to river (DR), distance to fault (DTF), normalized difference vehicle index (NDVI), distance to road (DTR), and other factors. We conclude that factors related to geomorphic conditions are principally responsible for controlling landslide susceptibility in the study area.


2013 ◽  
Vol 141 (11) ◽  
pp. 3908-3932 ◽  
Author(s):  
Xingqin Fang ◽  
Ying-Hwa Kuo

Abstract In this paper, a modified probability-matching technique is developed for ensemble-based quantitative precipitation forecasts (QPFs) associated with landfalling typhoons over Taiwan. The main features of this technique include a resampling of the ensemble realizations, a rainfall pattern adjustment, and a bias correction. Using this technique, a synthetic ensemble is created for the purpose of rainfall prediction from a large-size (32 members), low-resolution (36 km) ensemble and a small-size (8 members), high-resolution (4 km) ensemble. The rainfall pattern is adjusted based on the precipitation distribution of the 36- and 4-km ensembles. A bias-correction scheme is then applied to remove the known systematic bias from the resampled 4-km ensemble realizations as part of the probability-matching procedure. The modified probability-matching scheme is shown to substantially reduce or eliminate the intrinsic model rainfall bias and to provide better QPF guidance. The encouraging results suggest that this modified probability-matching technique is a useful tool for the QPF of the topography-enhanced typhoon heavy rainfall over Taiwan using ensemble forecasts at dual resolutions.


2021 ◽  
Vol 11 (02) ◽  
pp. 267-283
Author(s):  
Lovina Peter Japheth ◽  
Guirong Tan ◽  
Ladislaus Benedict Chang’a ◽  
Agnes Lawrence Kijazi ◽  
Kantamla Biseke Mafuru ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document