scholarly journals Growth supression of plant pathogenic fungi using bryophite extracts

2019 ◽  
Vol 35 (4) ◽  
Author(s):  
Nedeljko Latinovic ◽  
Marko S. Sabovljevic ◽  
Milorad Vujicic ◽  
Jelena Latinovic ◽  
Aneta D. Sabovljevic

Chemicals are often used in attempts to control diseases caused by plant pathogenic fungi during food production. However, chemicals can have adverse effects not just on food, but they also remain active for a long time within ecosystems, and thus are not environmentally friendly. Therefore, development of bio-treatment and avoiding use of chemicals are urgently needed. With the aim of studying and developing new environmentally-friendly treatments, we tested extracts from selected bryophyte species (Porella platyphylla, Cinclidotus fontinaloides and Anomodon viticulosus) on five plant pathogenic fungi under controlled conditions. The fungi (Botryosphaeria dothidea, Phomopsis viticola, Calosphaeria sp., Colletotrichum acutatum and Monilinia laxa) were selected based on common diseases they cause on fruits and grapevine. They were isolated in cultures and treated with bryophyte extracts. Bryophyte extracts were shown to be effective in suppression of certain plant pathogenic fungi growth and to have a huge potential in development of novel biotechnological treatments and biofungicides. The best results were achieved in inhibition of B. dothidea, P. viticola and Calosphaeria sp.

Apidologie ◽  
2019 ◽  
Vol 50 (6) ◽  
pp. 871-880 ◽  
Author(s):  
Jorgiane B. Parish ◽  
Eileen S. Scott ◽  
Raymond Correll ◽  
Katja Hogendoorn

AbstractHoney bees, Apis mellifera, have been implicated as vectors of plant pathogens. However, the survival of spores of plant pathogenic fungi through the digestive tract of workers has not been investigated. As workers defecate outside the hive, transport of hives could give rise to biosecurity concerns if fungal spores remain viable following passage through the digestive tract. To determine the likelihood that honey bees serve as vectors, this study investigated the viability of spores of Botrytis cinerea and Colletotrichum acutatum after passing through the digestive tract of summer and autumn worker bees. For both fungi, the mean viability of spores in faeces suspensions was less than one percent of the initial dose fed to the bees. Although survival was low, the large number of workers per hive implies a high probability of transmission of viable spores through honey bee faeces. Hence, in the case of economically important fungal diseases, transported hives could be a source of inoculum and quarantine restrictions should be considered.


2006 ◽  
Vol 59 ◽  
pp. 141-145 ◽  
Author(s):  
K.R. Everett ◽  
J. Rees-George

The plant pathogen Guignardia citricarpa causes citrus black spot and is not considered to be present in New Zealand Speciesspecific polymerase chain reaction (PCR) primers were designed to identify G citricarpa and G mangiferae a closely related saprotroph that is present in New Zealand These PCR primers were tested against a range of other saprotrophic and pathogenic fungi viz Botrytis cinerea Botryosphaeria dothidea B parva Cladosporium sp Colletotrichum acutatum C gloeosporioides Cryptosporiopsis sp Epicoccum sp Nigrospora sp Penicillium sp Pestalotia sp Phialophora sp Phlyctema sp Phoma sp Phomopsis sp Stemphylium sp and Venturia inaequalis The primers JRGGc were specific to G citricarpa and JRGGm to G mangiferae A 226 bp product was amplified from G mangiferae DNA using JRGGm primers and a 501 bp product was amplified from G citricarpa DNA using JRGGc primers These primers thus distinguished G citricarpa from G mangiferae and can be used to rapidly identify incursions by citrus black spot


Plant Disease ◽  
2008 ◽  
Vol 92 (1) ◽  
pp. 106-112 ◽  
Author(s):  
Maritza Abril ◽  
Kenneth J. Curry ◽  
Barbara J. Smith ◽  
David E. Wedge

Seven important plant pathogenic fungi (Botrytis cinerea, Colletotrichum acutatum, C. fragariae, C. gloeosporioides, Fusarium oxysporum, Phomopsis obscurans, and P. viticola) valuable in screening fungicides were tested. Our procedure included washing conidia to reduce germination times, incorporating Roswell Park Memorial Institute 1640 as a medium of known composition, and using coverslips in the 24-well cell culture clusters to document the effect of fungicides on fungal morphology. The natural product-based fungicide, sampangine, a sampangine analog, 4-bromosampangine, plus seven conventional fungicides (benomyl, captan, cyprodinil, fenbuconazole, fenhexamid, iprodione, and kresoxim-methyl) were tested in vitro for their ability to inhibit germination and growth of the seven fungal species. Sampangine inhibited germination in all fungi except C. acutatum. Comparison of results of germination and morphology microbioassays with results of microtiter assays suggests that some fungicides stop fungal germination, whereas others only slow down fungal growth. We hypothesize that sampangine, except against C. acutatum, has the same physical mode of action, germination inhibition, as the conventional fungicides captan, iprodione, and kresoxim-methyl. 4-Bromosampangine caused morphological anomalies including excessive branching of germ tubes of C. fragariae and splaying and branching of germ tubes of B. cinerea.


2018 ◽  
Vol 25 (2) ◽  
pp. 268-286 ◽  
Author(s):  
Maurizio Vurro ◽  
Angela Boari ◽  
Francesca Casella ◽  
Maria Chiara Zonno

Fungal phytotoxins are natural secondary metabolites produced by plant pathogenic fungi during host–pathogen interactions. They have received considerable particular attention for elucidating disease etiology, and consequently to design strategies for disease control. Due to wide differences in their chemical structures, these toxic metabolites have different ecological and environmental roles and mechanisms of action. This review aims at summarizing the studies on the possible use of these metabolites as tools in biological and integrated weed management, e.g. as: novel and environmentally friendly herbicides; lead for novel compounds; sources of novel mechanisms of action. Moreover, the limiting factors for utilizing those metabolites in practice will also be briefly discussed.


2016 ◽  
Vol 5 (08) ◽  
pp. 4744
Author(s):  
Zahra Ibrahim El-Gali

This study was carried out to identify the unknown different symptoms and their causes as plant pathogenic fungi from Al-Jabal Al-Akhdar District. Plant materials with fungal signs and symptoms were collected and examined. The main fungi consistently isolated from symptomatic leaves and twigs were Pestalotiopsis spp. Morphology, colony characteristics, and pathogenicity of the isolates were examined. My report the occurrence of Pestalotiopsis spp. on leaves of mastic (Pistacia lentiscus) for the first time in Libya.


2014 ◽  
Vol 92 (1) ◽  
pp. 10-27 ◽  
Author(s):  
Bilal Ökmen ◽  
Jérôme Collemare ◽  
Scott Griffiths ◽  
Ate van der Burgt ◽  
Russell Cox ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document