scholarly journals Design of short-term forecasting model of distributed generation power for wind power

2014 ◽  
Vol 12 (3) ◽  
pp. 211-218 ◽  
Author(s):  
Jae-Ju Song ◽  
Yoon-Su Jeong ◽  
Sang-Ho Lee
2021 ◽  
Vol 296 ◽  
pp. 126564
Author(s):  
Md Alamgir Hossain ◽  
Ripon K. Chakrabortty ◽  
Sondoss Elsawah ◽  
Michael J. Ryan

2011 ◽  
Vol 6 (1) ◽  
pp. 55-58 ◽  
Author(s):  
C. Gallego ◽  
A. Costa ◽  
A. Cuerva

Abstract. Ramp events are large rapid variations within wind power time series. Ramp forecasting can benefit from specific strategies so as to particularly take into account these shifts in the wind power output dynamic. In the short-term context (characterized by prediction horizons from minutes to a few days), a Regime-Switching (RS) model based on Artificial Neural Nets (ANN) is proposed. The objective is to identify three regimes in the wind power time series: Ramp-up, Ramp-down and No-ramp regime. An on-line regime assessment methodology is also proposed, based on a local gradient criterion. The RS-ANN model is compared to a single-ANN model (without regime discrimination), concluding that the regime-switching strategy leads to significant improvements for one-hour ahead forecasts, mainly due to the improvements obtained during ramp-up events. Including other explanatory variables (NWP outputs, local measurements) during the regime assessment could eventually improve forecasts for further horizons.


2014 ◽  
Vol 88 ◽  
pp. 231-238 ◽  
Author(s):  
Claudio Monteiro ◽  
Ignacio J. Ramirez-Rosado ◽  
L. Alfredo Fernandez-Jimenez

2018 ◽  
Vol 51 ◽  
pp. 02002 ◽  
Author(s):  
Stanislav Eroshenko ◽  
Alexandra Khalyasmaa

The paper presents a short-term forecasting model for solar power stations (SPS) generation developed by the authors. This model is based on weather data and built into the existing software product as a separate short-term forecasting module for the SPS generation. The main problems associated with forecasting the SPS generation on cloudy days were revealed in the framework of authors' research, which is due not to the error of the developed model but to the use of the same learning sample for both solar and cloudy days. This paper contains analysis of the main problems related to the learning sampling, samples pattern, quality and representativeness for forecasting the SPS generation on cloudy days. Besides, the paper includes a calculation example performed for the existing SPS and a detailed analysis of the forecast generation on cloudy days based on the actual weather provider data.


Author(s):  
Juan Huang ◽  
Ching-Wu Chu ◽  
Hsiu-Li Hsu

This study aims to make comparisons on different univariate forecasting methods and provides a more accurate short-term forecasting model on the container throughput for rendering a reference to relevant authorities. We collected monthly data regarding container throughput volumes for three major ports in Asia, Shanghai, Singapore, and Busan Ports. Six different univariate methods, including the grey forecasting model, the hybrid grey forecasting model, the multiplicative decomposition model, the trigonometric regression model, the regression model with seasonal dummy variables, and the seasonal autoregressive integrated moving average (SARIMA) model, were used. We found that the hybrid grey forecasting model outperforms the other univariate models. This study’s findings can provide a more accurate short-term forecasting model for container throughput to create a reference for port authorities.


Author(s):  
Juliana G. Damaceno ◽  
Claudio Cesaroni ◽  
Luca Spogli ◽  
Marcin Grzesiak ◽  
Giorgiana De Franceschi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document