scholarly journals Design and Fabrication of CLYC-Based Rotational Modulation Collimator (RMC) System for Gamma-Ray/Neutron Dual-Particle Imager

2021 ◽  
Vol 46 (3) ◽  
pp. 112-119
Author(s):  
Hyun Suk Kim ◽  
Jooyub Lee ◽  
Sanghun Choi ◽  
Young-bong Bang ◽  
Sung-Joon Ye ◽  
...  

Background: This work aims to develop a new imaging system based on a pulse shape discrimination-capable Cs2LiYCl6:Ce (CLYC) scintillation detector combined with the rotational modulation collimator (RMC) technique for dual-particle imaging.Materials and Methods: In this study, a CLYC-based RMC system was designed based on Monte Carlo simulations, and a prototype was fabricated. Therein, a rotation control system was developed to rotate the RMC unit precisely, and a graphical user interface-based software was also developed to operate the data acquisition with RMC rotation. The RMC system was developed to allow combining various types of collimator masks and detectors interchangeably, making the imaging system more versatile for various applications and conditions.Results and Discussion: Operational performance of the fabricated system was studied by checking the accuracy and precision of the collimator rotation and obtaining modulation patterns from a gamma-ray source repeatedly.Conclusion: The prototype RMC system showed reliability in its mechanical properties and reproducibility in the acquisition of modulation patterns, and it will be further investigated for its dual-particle imaging capability with various complex radioactive source conditions.

1994 ◽  
Vol 144 ◽  
pp. 635-639
Author(s):  
J. Baláž ◽  
A. V. Dmitriev ◽  
M. A. Kovalevskaya ◽  
K. Kudela ◽  
S. N. Kuznetsov ◽  
...  

AbstractThe experiment SONG (SOlar Neutron and Gamma rays) for the low altitude satellite CORONAS-I is described. The instrument is capable to provide gamma-ray line and continuum detection in the energy range 0.1 – 100 MeV as well as detection of neutrons with energies above 30 MeV. As a by-product, the electrons in the range 11 – 108 MeV will be measured too. The pulse shape discrimination technique (PSD) is used.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jihwan Boo ◽  
Mark D. Hammig ◽  
Manhee Jeong

AbstractDual particle imaging, in which both neutrons and gamma-rays in the environment can be individually characterized, is particularly attractive for monitoring mixed radiation emitters such as special nuclear materials (SNM). Effective SNM localization and detection benefits from high instrument sensitivity so that real-time imaging or imaging with a limited number of acquired events is enabled. For portable applications, one also desires a dual particle imager (DPI) that is readily deployable. We have developed a hand-held type DPI equipped with a pixelated stilbene-silicon photomultiplier (SiPM) array module and low sampling-rate analog-to-digital converters (ADCs) processed via a multiplexed readout. The stilbene-SiPM array (12 × 12 pixels) is capable of effectively performing pulse shape discrimination (PSD) between gamma-ray and neutron events and neutron/gamma-ray source localization on the imaging plane, as demonstrated with 252Cf neutron/gamma and 137Cs gamma-ray sources. The low sampling rate ADCs connected to the stilbene-SiPM array module result in a compact instrument with high sensitivity that provides a gamma-ray image of a 137Cs source, producing 6.4 μR/h at 1 m, in less than 69 s. A neutron image for a 3.5 × 105 n/s 252Cf source can also be obtained in less than 6 min at 1 m from the center of the system. The instrument images successfully with field of view of 50° and provides angular resolution of 6.8°.


2018 ◽  
Vol 145 ◽  
pp. 193-201 ◽  
Author(s):  
Zhang-jian Qin ◽  
Chuan Chen ◽  
Jun-song Luo ◽  
Xing-hong Xie ◽  
Liang-quan Ge ◽  
...  

Author(s):  
Allison Lim ◽  
Jonathan Arrue ◽  
Paul B. Rose ◽  
Alan Sellinger ◽  
Anna Erickson

2019 ◽  
Vol 66 (9) ◽  
pp. 2114-2122
Author(s):  
Hyun Suk Kim ◽  
Minho Na ◽  
Jong G. Ok ◽  
Geehyun Kim ◽  
Sung-Joon Ye

Sign in / Sign up

Export Citation Format

Share Document