scholarly journals A modified class of exponential-type estimator of population-mean in simple random sampling

Author(s):  
Ekaette Enang ◽  
Joy Uket ◽  
Emmanuel Ekpenyong

The problem of obtaining better ratio estimators of the population means are dominating in survey sampling. This paper provides a modified class of exponential type estimators using combinations of some existing estimators. Expressions for the bias and Mean Square Error (MSE) with the optimality conditions for this class of estimators have been established. Both analytical and numerical comparison with some existing estimators shows better performances from members of the proposed class.

Entropy ◽  
2021 ◽  
Vol 23 (3) ◽  
pp. 318
Author(s):  
Manuel Mendoza ◽  
Alberto Contreras-Cristán ◽  
Eduardo Gutiérrez-Peña

Statistical methods to produce inferences based on samples from finite populations have been available for at least 70 years. Topics such as Survey Sampling and Sampling Theory have become part of the mainstream of the statistical methodology. A wide variety of sampling schemes as well as estimators are now part of the statistical folklore. On the other hand, while the Bayesian approach is now a well-established paradigm with implications in almost every field of the statistical arena, there does not seem to exist a conventional procedure—able to deal with both continuous and discrete variables—that can be used as a kind of default for Bayesian survey sampling, even in the simple random sampling case. In this paper, the Bayesian analysis of samples from finite populations is discussed, its relationship with the notion of superpopulation is reviewed, and a nonparametric approach is proposed. Our proposal can produce inferences for population quantiles and similar quantities of interest in the same way as for population means and totals. Moreover, it can provide results relatively quickly, which may prove crucial in certain contexts such as the analysis of quick counts in electoral settings.


PLoS ONE ◽  
2021 ◽  
Vol 16 (5) ◽  
pp. e0246947
Author(s):  
Sohail Ahmad ◽  
Muhammad Arslan ◽  
Aamna Khan ◽  
Javid Shabbir

In this paper, we propose a generalized class of exponential type estimators for estimating the finite population mean using two auxiliary attributes under simple random sampling and stratified random sampling. The bias and mean squared error (MSE) of the proposed class of estimators are derived up to first order of approximation. Both empirical study and theoretical comparisons are discussed. Four populations are used to support the theoretical findings. It is observed that the proposed class of estimators perform better as compared to all other considered estimator in simple and stratified random sampling.


2021 ◽  
Vol 2021 ◽  
pp. 1-6
Author(s):  
Usman Shahzad ◽  
Shabnam Shahzadi ◽  
Noureen Afshan ◽  
Nadia H. Al-Noor ◽  
David Anekeya Alilah ◽  
...  

The most frequent method for modeling count responses in numerous investigations is the Poisson regression model. Under simple random sampling, this paper offers utilizing Poisson regression-based mean estimator and discovers its associated formula of the mean square error (MSE). The MSE of the proposed estimator is compared to the MSE of traditional ratio estimators in theory. As a result of these evaluations, the proposed estimator has been proven to be more efficient than traditional estimators. Furthermore, the practical results corroborated the theoretical findings.


2021 ◽  
Vol 21 (2) ◽  
pp. 347-354
Author(s):  
MUHAMMAD IJAZ ◽  
TOLGA ZAMAN ◽  
BUSHRA HAIDER ◽  
SYED MUHAMMAD ASIM

The study suggests a class of product estimators for estimating the population mean of variable under investigation in simple random sampling without replacement (SRSWOR) scheme when secondary information on standard deviation, mean deviation, and quartile deviation is available. The expression for Bias and Mean Square Error (MSE) has been derived. A comparison is made both theoretically and numerically with other existing product estimators. It is concluded that compared to other product type estimators, suggested class of estimators estimate the population mean more efficiently.


2005 ◽  
Vol 10 (4) ◽  
pp. 333-342
Author(s):  
V. Chadyšas ◽  
D. Krapavickaitė

Estimator of finite population parameter – ratio of totals of two variables – is investigated by modelling in the case of simple random sampling. Traditional estimator of the ratio is compared with the calibrated estimator of the ratio introduced by Plikusas [1]. The Taylor series expansion of the estimators are used for the expressions of approximate biases and approximate variances [2]. Some estimator of bias is introduced in this paper. Using data of artificial population the accuracy of two estimators of the ratio is compared by modelling. Dependence of the estimates of mean square error of the estimators of the ratio on the correlation coefficient of variables which are used in the numerator and denominator, is also shown in the modelling.


2020 ◽  
Vol 16 (1) ◽  
pp. 61-75
Author(s):  
S. Baghel ◽  
S. K. Yadav

AbstractThe present paper provides a remedy for improved estimation of population mean of a study variable, using the information related to an auxiliary variable in the situations under Simple Random Sampling Scheme. We suggest a new class of estimators of population mean and the Bias and MSE of the class are derived upto the first order of approximation. The least value of the MSE for the suggested class of estimators is also obtained for the optimum value of the characterizing scaler. The MSE has also been compared with the considered existing competing estimators both theoretically and empirically. The theoretical conditions for the increased efficiency of the proposed class, compared to the competing estimators, is verified using a natural population.


Sign in / Sign up

Export Citation Format

Share Document