Efficient Golden-Ball Algorithm Based Clustering to solve the Multi-Depot VRP With Time Windows

2018 ◽  
Vol 9 (1) ◽  
pp. 1-16 ◽  
Author(s):  
Lahcene Guezouli ◽  
Mohamed Bensakhria ◽  
Samir Abdelhamid

In this article, the authors propose a decision support system which aims to optimize the classical Capacitated Vehicle Routing Problem by considering the existence of multiple available depots and a time window which must not be violated, that they call the Multi-Depot Vehicle Routing Problem with Time Window (MDVRPTW), and with respecting a set of criteria including: schedules requests from clients, the capacity of vehicles. The authors solve this problem by proposing a recently published technique based on soccer concepts, called Golden Ball (GB), with different solution representation from the original one, this technique was designed to solve combinatorial optimization problems, and by embedding a clustering algorithm. Computational results have shown that the approach produces acceptable quality solutions compared to the best previous results in similar problem in terms of generated solutions and processing time. Experimental results prove that the proposed Golden Ball algorithm is efficient and effective to solve the MDVRPTW problem.

2017 ◽  
Vol 4 (1) ◽  
pp. 1-18 ◽  
Author(s):  
Lahcene Guezouli ◽  
Samir Abdelhamid

One of the most important combinatorial optimization problems is the transport problem, which has been associated with many variants such as the HVRP and dynamic problem. The authors propose in this study a decision support system which aims to optimize the classical Capacitated Vehicle Routing Problem by considering the existence of different vehicle types (with distinct capacities and costs) and multiple available depots, that the authors call the Multi-Depot HVRPTW by respecting a set of criteria including: schedules requests from clients, the heterogeneous capacity of vehicles..., and the authors solve this problem by proposing a new scheme based on a genetic algorithm heuristics that they will specify later. Computational experiments with the benchmark test instances confirm that their approach produces acceptable quality solutions compared with previous results in similar problems in terms of generated solutions and processing time. Experimental results prove that the method of genetic algorithm heuristics is effective in solving the MDHVRPTW problem and hence has a great potential.


2014 ◽  
Vol 2014 ◽  
pp. 1-17 ◽  
Author(s):  
E. Osaba ◽  
F. Diaz ◽  
R. Carballedo ◽  
E. Onieva ◽  
A. Perallos

Nowadays, the development of new metaheuristics for solving optimization problems is a topic of interest in the scientific community. In the literature, a large number of techniques of this kind can be found. Anyway, there are many recently proposed techniques, such as the artificial bee colony and imperialist competitive algorithm. This paper is focused on one recently published technique, the one called Golden Ball (GB). The GB is a multiple-population metaheuristic based on soccer concepts. Although it was designed to solve combinatorial optimization problems, until now, it has only been tested with two simple routing problems: the traveling salesman problem and the capacitated vehicle routing problem. In this paper, the GB is applied to four different combinatorial optimization problems. Two of them are routing problems, which are more complex than the previously used ones: the asymmetric traveling salesman problem and the vehicle routing problem with backhauls. Additionally, one constraint satisfaction problem (the n-queen problem) and one combinatorial design problem (the one-dimensional bin packing problem) have also been used. The outcomes obtained by GB are compared with the ones got by two different genetic algorithms and two distributed genetic algorithms. Additionally, two statistical tests are conducted to compare these results.


2012 ◽  
Vol 263-266 ◽  
pp. 1609-1613 ◽  
Author(s):  
Su Ping Yu ◽  
Ya Ping Li

The Vehicle Routing Problem (VRP) is an important problem occurring in many distribution systems, which is also defined as a family of different versions such as the Capacitated Vehicle Routing Problem (CVRP) and the Vehicle Routing Problem with Time Windows (VRPTW). The Ant Colony Optimization (ACO) is a metaheuristic for combinatorial optimization problems. Given the ACO inadequacy, the vehicle routing optimization model is improved and the transfer of the algorithm in corresponding rules and the trajectory updated regulations is reset in this paper, which is called the Improved Ant Colony Optimization (I-ACO). Compared to the calculated results with genetic algorithm (GA) and particle swarm optimization (PSO), the correctness of the model and algorithm is verified. Experimental results show that the I-ACO can quickly and effectively obtain the optimal solution of VRFTW.


2018 ◽  
Vol 7 (2.32) ◽  
pp. 80 ◽  
Author(s):  
Avirup Guha Neogi ◽  
Singamreddy Mounika ◽  
Salagrama Kalyani ◽  
S A. Yogananda Sai

Ant Colony Optimization (ACO) is a nature-inspired swarm intelligence technique and a metaheuristic approach which is inspired by the foraging behavior of the real ants, where ants release pheromones to find the best and shortest route from their nest to the food source. ACO is being applied to various optimization problems till date and has been giving good quality results in the field. One such popular problem is known as Vehicle Routing Problem(VRP). Among many variants of VRP, this paper presents a comprehensive survey on VRP with Time Window constraints(VRPTW). The survey is presented in a chronological order discussing which of the variants of ACO is used in each paper followed by the advantages and limitations of the same.  


Author(s):  
Hongguang Wu ◽  
Yuelin Gao ◽  
Wanting Wang ◽  
Ziyu Zhang

AbstractIn this paper, we propose a vehicle routing problem with time windows (TWVRP). In this problem, we consider a hard time constraint that the fleet can only serve customers within a specific time window. To solve this problem, a hybrid ant colony (HACO) algorithm is proposed based on ant colony algorithm and mutation operation. The HACO algorithm proposed has three innovations: the first is to update pheromones with a new method; the second is the introduction of adaptive parameters; and the third is to add the mutation operation. A famous Solomon instance is used to evaluate the performance of the proposed algorithm. Experimental results show that HACO algorithm is effective against solving the problem of vehicle routing with time windows. Besides, the proposed algorithm also has practical implications for vehicle routing problem and the results show that it is applicable and effective in practical problems.


OR Spectrum ◽  
2021 ◽  
Author(s):  
Christian Tilk ◽  
Katharina Olkis ◽  
Stefan Irnich

AbstractThe ongoing rise in e-commerce comes along with an increasing number of first-time delivery failures due to the absence of the customer at the delivery location. Failed deliveries result in rework which in turn has a large impact on the carriers’ delivery cost. In the classical vehicle routing problem (VRP) with time windows, each customer request has only one location and one time window describing where and when shipments need to be delivered. In contrast, we introduce and analyze the vehicle routing problem with delivery options (VRPDO), in which some requests can be shipped to alternative locations with possibly different time windows. Furthermore, customers may prefer some delivery options. The carrier must then select, for each request, one delivery option such that the carriers’ overall cost is minimized and a given service level regarding customer preferences is achieved. Moreover, when delivery options share a common location, e.g., a locker, capacities must be respected when assigning shipments. To solve the VRPDO exactly, we present a new branch-price-and-cut algorithm. The associated pricing subproblem is a shortest-path problem with resource constraints that we solve with a bidirectional labeling algorithm on an auxiliary network. We focus on the comparison of two alternative modeling approaches for the auxiliary network and present optimal solutions for instances with up to 100 delivery options. Moreover, we provide 17 new optimal solutions for the benchmark set for the VRP with roaming delivery locations.


2021 ◽  
Vol 19 (1) ◽  
pp. 1-6
Author(s):  
Dedi Sa'dudin Taptajani

Vehicle Routing Problem (VRP) merupakan suatu permasalahan yang berkaitan dengan bagaimana menentukan rute yang dianggap optimal dan melibatkan lebih dari satu alat angkut demi memperhatikan beberapa kendala dalam melayani sejumlah tempat layanan sesuai dengan permintaan. Salah satu varian dari VRP adalah capacitated vehicle routing problem with time window (CVRPTW) varian ini menambahkan kendala kapasitas alat angkut sebagai salah satu pertimbangan didalam mengangkut ke masing masing tujuan dan kemudian memberikan jendela waktu didalam proses pengangkutannya. Tujuan dari penulisan ini adalah menjelaskan pembentukan model dari CVRPTW untuk permasalahan rute pengangkutan sampah dari tiap rumah Sampai Ke Tempat Pembuangan Akhir, dengan pertimbangan waktu yang tersedia dan kapasitas angkut alat angkut yang tersedia, Sedangkan Penyelesaiannya yaitu dengan menggunakan pendekatan algoritma sweep. Algoritma Ini merupakan algoritma yang terdiri dari dua tahap, pada tahapan pertama yaitu clustering dari masing masing rumah dan tahap selanjurtnya yaitu membentuk rute pengiriman untuk masing-masing cluster dengan metode Nearest Neighbour, kemudian dilanjutkan dengan menentukan kapasitas alat angkut terhadap waktu yang diperlukan untuk menentukan kapan sampah ini akan di angkut ke tempat pembuangan akhir. Studi ini sangat penting dilakukan dalam rangka menerapkan dasar untuk memahami kemungkinan meningkatkan tingkat layanan pada proses pengangkutan sampah di tingkat desa.


2010 ◽  
Vol 1 (2) ◽  
pp. 82-92 ◽  
Author(s):  
Gilbert Laporte

The Traveling Salesman Problem (TSP) and the Vehicle Routing Problem (VRP) are two of the most popular problems in the field of combinatorial optimization. Due to the study of these two problems, there has been a significant growth in families of exact and heuristic algorithms being used today. The purpose of this paper is to show how their study has fostered developments of the most popular algorithms now applied to the solution of combinatorial optimization problems. These include exact algorithms, classical heuristics and metaheuristics.


2015 ◽  
Vol 24 (06) ◽  
pp. 1550021 ◽  
Author(s):  
Esam Taha Yassen ◽  
Masri Ayob ◽  
Mohd Zakree Ahmad Nazri ◽  
Nasser R. Sabar

Harmony search algorithm, which simulates the musical improvisation process in seeking agreeable harmony, is a population based meta-heuristics algorithm for solving optimization problems. Although it has been successfully applied on various optimization problems; it suffers the slow convergence problem, which greatly hinders its applicability for getting good quality solution. Therefore, in this work, we propose a hybrid meta-heuristic algorithm that hybridizes a harmony search with simulated annealing for the purpose of improving the performance of harmony search algorithm. Harmony search algorithm is used to explore the search spaces. Whilst, simulated annealing algorithm is used inside the harmony search algorithm to exploit the search space and further improve the solutions that are generated by harmony search algorithm. The performance of the proposed algorithm is tested using the Solomon's Vehicle Routing Problem with Time Windows (VRPTW) benchmark. Numerical results demonstrate that the hybrid approach is better than the harmony search without simulated annealing and the hybrid also proves itself to be more competent (if not better on some instances) when compared to other approaches in the literature.


2021 ◽  
Vol 2021 ◽  
pp. 1-21
Author(s):  
Yong Wang ◽  
Xiuwen Wang ◽  
Xiangyang Guan ◽  
Jinjun Tang

This study aims to provide tactical and operational decisions in multidepot recycling logistics networks with consideration of resource sharing (RS) and time window assignment (TWA) strategies. The RS strategy contributes to efficient resource allocation and utilization among recycling centers (RCs). The TWA strategy involves assigning time windows to customers to enhance the operational efficiency of logistics networks. A biobjective mathematical model is established to minimize the total operating cost and number of vehicles for solving the multidepot recycling vehicle routing problem with RS and TWA (MRVRPRSTWA). A hybrid heuristic algorithm including 3D k-means clustering algorithm and nondominated sorting genetic algorithm- (NSGA-) II (NSGA-II) is designed. The 3D k-means clustering algorithm groups customers into clusters on the basis of their spatial and temporal distances to reduce the computational complexity in optimizing the multidepot logistics networks. In comparison with NSGA algorithm, the NSGA-II algorithm incorporates an elitist strategy, which can improve the computational speed and robustness. In this study, the performance of the NSGA-II algorithm is compared with the other two algorithms. Results show that the proposed algorithm is superior in solving MRVRPRSTWA. The proposed model and algorithm are applied to an empirical case study in Chongqing City, China, to test their applicability in real logistics operations. Four different scenarios regarding whether the RS and TWA strategies are included or not are developed to test the efficacy of the proposed methods. The results indicate that the RS and TWA strategies can optimize the recycling services and resource allocation and utilization and enhance the operational efficiency, thus promoting the sustainable development of the logistics industry.


Sign in / Sign up

Export Citation Format

Share Document