scholarly journals A Survey on Prevention of Overfitting in Convolution Neural Networks Using Machine Learning Techniques

2018 ◽  
Vol 7 (2.32) ◽  
pp. 177 ◽  
Author(s):  
Dr M.R.Narasinga Rao ◽  
V Venkatesh Prasad ◽  
P Sai Teja ◽  
Md Zindavali ◽  
O Phanindra Reddy

Deep neural nets with a vast quantity of parameters are very effective machine getting to know structures. However, overfitting is an extreme problem in such networks. Massive networks are also sluggish to use, making it difficult to cope with overfitting by combining the predictions of many distinct large neural nets at test time. Dropout is a method for addressing this problem. The important thing concept is to randomly drop units (at the side of their connections) from the neural network for the duration of education. This prevents units from co-adapting an excessive amount of. during schooling, dropout samples from an exponential quantity of various "thinned" networks. At take a look at the time, it is simple to precise the impact of averaging the predictions of plenty of these thinned networks through in reality using a single unthinned network that has smaller weights. This considerably minimize overfitting and provides fundamental enhancements over other regularization techniques. We show that dropout enhance the overall performance of neural networks on manage gaining knowledge of obligations in imaginative and prescient, speech reputation, document type and computational biology, acquiring today's effects on many benchmark facts sets.  

2020 ◽  
Vol 17 (8) ◽  
pp. 3786-3789
Author(s):  
P. Gayathri ◽  
P. Gowri Priya ◽  
L. Sravani ◽  
Sandra Johnson ◽  
Visanth Sampath

Recognition of emotions is the aspect of speech recognition that is gaining more attention and the need for it is growing enormously. Although there are methods to identify emotion using machine learning techniques, we assume in this paper that calculating deltas and delta-deltas for customized features not only preserves effective emotional information, but also that the impact of irrelevant emotional factors, leading to a reduction in misclassification. Furthermore, Speech Emotion Recognition (SER) often suffers from the silent frames and irrelevant emotional frames. Meanwhile, the process of attention has demonstrated exceptional performance in learning related feature representations for specific tasks. Inspired by this, propose a Convolutionary Recurrent Neural Networks (ACRNN) based on Attention to learn discriminative features for SER, where the Mel-spectrogram with deltas and delta-deltas is used as input. Finally, experimental results show the feasibility of the proposed method and attain state-of-the-art performance in terms of unweighted average recall.


2017 ◽  
Vol 1 (3) ◽  
pp. 83 ◽  
Author(s):  
Chandrasegar Thirumalai ◽  
Ravisankar Koppuravuri

In this paper, we will use deep neural networks for predicting the bike sharing usage based on previous years usage data. We will use because deep neural nets for getting higher accuracy. Deep neural nets are quite different from other machine learning techniques; here we can add many numbers of hidden layers to improve the accuracy of our prediction and the model can be trained in the way we want such that we can achieve the results we want. Nowadays many AI experts will say that deep learning is the best AI technique available now and we can achieve some unbelievable results using this technique. Now we will use that technique to predict bike sharing usage of a rental company to make sure they can take good business decisions based on previous years data.


2021 ◽  
pp. 1-105
Author(s):  
Diana Salazar Florez ◽  
Heather Bedle

Nowadays, there are many unsupervised and supervised machine learning techniques available for performing seismic facies classification. However, those classification methods either demand high computational costs or do not provide an accurate measure of confidence. Probabilistic neural networks (PNNs) overcome these limitations and have demonstrated their superiority among other algorithms. PNNs have been extensively applied for some prediction tasks, but not well studied regarding the prediction of seismic facies volumes using seismic attributes. We explore the capability of the PNN algorithm when classifying large- and small-scale seismic facies. Additionally, we evaluate the impact of user-chosen parameters on the final classification volumes. After performing seven tests, each with a parameter variation, we assess the impact of the parameter change on the resultant classification volumes. We show that the processing task can have a significant impact on the classification volumes, but also how the most geologically complex areas are the most challenging for the algorithm. Moreover, we demonstrate that even if the PNN technique is performing and producing considerably accurate results, it is possible to overcome those limitations and significantly improve the final classification volumes by including the geological insight provided by the geoscientist. We conclude by proposing a new workflow that can guide future geoscientists interested in applying PNNs, to obtain better seismic facies classification volumes by considering some initial steps and advice.


Sensors ◽  
2019 ◽  
Vol 19 (19) ◽  
pp. 4342 ◽  
Author(s):  
Gustavo Scalabrini Sampaio ◽  
Arnaldo Rabello de Aguiar Vallim Filho ◽  
Leilton Santos da Silva ◽  
Leandro Augusto da Silva

Industry is constantly seeking ways to avoid corrective maintenance so as to reduce costs. Performing regular scheduled maintenance can help to mitigate this problem, but not necessarily in the most efficient way. In the context of condition-based maintenance, the main contributions of this work were to propose a methodology to treat and transform the collected data from a vibration system that simulated a motor and to build a dataset to train and test an Artificial Neural Network capable of predicting the future condition of the equipment, pointing out when a failure can happen. To achieve this goal, a device model was built to simulate typical motor vibrations, consisting of a computer cooler fan and several magnets. Measurements were made using an accelerometer, and the data were collected and processed to produce a structured dataset. The neural network training with this dataset converged quickly and stably, while the tests performed, k-fold cross-validation and model generalization, presented excellent performance. The same tests were performed with other machine learning techniques, to demonstrate the effectiveness of neural networks mainly in their generalizability. The results of the work confirm that it is possible to use neural networks to perform predictive tasks in relation to the conditions of industrial equipment. This is an important area of study that helps to support the growth of smart industries.


Author(s):  
K Sooknunan ◽  
M Lochner ◽  
Bruce A Bassett ◽  
H V Peiris ◽  
R Fender ◽  
...  

Abstract With the advent of powerful telescopes such as the Square Kilometer Array and the Vera C. Rubin Observatory, we are entering an era of multiwavelength transient astronomy that will lead to a dramatic increase in data volume. Machine learning techniques are well suited to address this data challenge and rapidly classify newly detected transients. We present a multiwavelength classification algorithm consisting of three steps: (1) interpolation and augmentation of the data using Gaussian processes; (2) feature extraction using wavelets; (3) classification with random forests. Augmentation provides improved performance at test time by balancing the classes and adding diversity into the training set. In the first application of machine learning to the classification of real radio transient data, we apply our technique to the Green Bank Interferometer and other radio light curves. We find we are able to accurately classify most of the eleven classes of radio variables and transients after just eight hours of observations, achieving an overall test accuracy of 78%. We fully investigate the impact of the small sample size of 82 publicly available light curves and use data augmentation techniques to mitigate the effect. We also show that on a significantly larger simulated representative training set that the algorithm achieves an overall accuracy of 97%, illustrating that the method is likely to provide excellent performance on future surveys. Finally, we demonstrate the effectiveness of simultaneous multiwavelength observations by showing how incorporating just one optical data point into the analysis improves the accuracy of the worst performing class by 19%.


2014 ◽  
Vol 28 (2) ◽  
pp. 3-28 ◽  
Author(s):  
Hal R. Varian

Computers are now involved in many economic transactions and can capture data associated with these transactions, which can then be manipulated and analyzed. Conventional statistical and econometric techniques such as regression often work well, but there are issues unique to big datasets that may require different tools. First, the sheer size of the data involved may require more powerful data manipulation tools. Second, we may have more potential predictors than appropriate for estimation, so we need to do some kind of variable selection. Third, large datasets may allow for more flexible relationships than simple linear models. Machine learning techniques such as decision trees, support vector machines, neural nets, deep learning, and so on may allow for more effective ways to model complex relationships. In this essay, I will describe a few of these tools for manipulating and analyzing big data. I believe that these methods have a lot to offer and should be more widely known and used by economists.


Author(s):  
Jinfang Zeng ◽  
Youming Li ◽  
Yu Zhang ◽  
Da Chen

Environmental sound classification (ESC) is a challenging problem due to the complexity of sounds. To date, a variety of signal processing and machine learning techniques have been applied to ESC task, including matrix factorization, dictionary learning, wavelet filterbanks and deep neural networks. It is observed that features extracted from deeper networks tend to achieve higher performance than those extracted from shallow networks. However, in ESC task, only the deep convolutional neural networks (CNNs) which contain several layers are used and the residual networks are ignored, which lead to degradation in the performance. Meanwhile, a possible explanation for the limited exploration of CNNs and the difficulty to improve on simpler models is the relative scarcity of labeled data for ESC. In this paper, a residual network called EnvResNet for the ESC task is proposed. In addition, we propose to use audio data augmentation to overcome the problem of data scarcity. The experiments will be performed on the ESC-50 database. Combined with data augmentation, the proposed model outperforms baseline implementations relying on mel-frequency cepstral coefficients and achieves results comparable to other state-of-the-art approaches in terms of classification accuracy.


2021 ◽  
Author(s):  
Rogini Runghen ◽  
Daniel B Stouffer ◽  
Giulio Valentino Dalla Riva

Collecting network interaction data is difficult. Non-exhaustive sampling and complex hidden processes often result in an incomplete data set. Thus, identifying potentially present but unobserved interactions is crucial both in understanding the structure of large scale data, and in predicting how previously unseen elements will interact. Recent studies in network analysis have shown that accounting for metadata (such as node attributes) can improve both our understanding of how nodes interact with one another, and the accuracy of link prediction. However, the dimension of the object we need to learn to predict interactions in a network grows quickly with the number of nodes. Therefore, it becomes computationally and conceptually challenging for large networks. Here, we present a new predictive procedure combining a graph embedding method with machine learning techniques to predict interactions on the base of nodes' metadata. Graph embedding methods project the nodes of a network onto a---low dimensional---latent feature space. The position of the nodes in the latent feature space can then be used to predict interactions between nodes. Learning a mapping of the nodes' metadata to their position in a latent feature space corresponds to a classic---and low dimensional---machine learning problem. In our current study we used the Random Dot Product Graph model to estimate the embedding of an observed network, and we tested different neural networks architectures to predict the position of nodes in the latent feature space. Flexible machine learning techniques to map the nodes onto their latent positions allow to account for multivariate and possibly complex nodes' metadata. To illustrate the utility of the proposed procedure, we apply it to a large dataset of tourist visits to destinations across New Zealand. We found that our procedure accurately predicts interactions for both existing nodes and nodes newly added to the network, while being computationally feasible even for very large networks. Overall, our study highlights that by exploiting the properties of a well understood statistical model for complex networks and combining it with standard machine learning techniques, we can simplify the link prediction problem when incorporating multivariate node metadata. Our procedure can be immediately applied to different types of networks, and to a wide variety of data from different systems. As such, both from a network science and data science perspective, our work offers a flexible and generalisable procedure for link prediction.


2020 ◽  
Author(s):  
Georgios Kantidakis ◽  
Hein Putter ◽  
Carlo Lancia ◽  
Jacob de Boer ◽  
Andries E Braat ◽  
...  

Abstract Background: Predicting survival of recipients after liver transplantation is regarded as one of the most important challenges in contemporary medicine. Hence, improving on current prediction models is of great interest.Nowadays, there is a strong discussion in the medical field about machine learning (ML) and whether it has greater potential than traditional regression models when dealing with complex data. Criticism to ML is related to unsuitable performance measures and lack of interpretability which is important for clinicians.Methods: In this paper, ML techniques such as random forests and neural networks are applied to large data of 62294 patients from the United States with 97 predictors selected on clinical/statistical grounds, over more than 600, to predict survival from transplantation. Of particular interest is also the identification of potential risk factors. A comparison is performed between 3 different Cox models (with all variables, backward selection and LASSO) and 3 machine learning techniques: a random survival forest and 2 partial logistic artificial neural networks (PLANNs). For PLANNs, novel extensions to their original specification are tested. Emphasis is given on the advantages and pitfalls of each method and on the interpretability of the ML techniques.Results: Well-established predictive measures are employed from the survival field (C-index, Brier score and Integrated Brier Score) and the strongest prognostic factors are identified for each model. Clinical endpoint is overall graft-survival defined as the time between transplantation and the date of graft-failure or death. The random survival forest shows slightly better predictive performance than Cox models based on the C-index. Neural networks show better performance than both Cox models and random survival forest based on the Integrated Brier Score at 10 years.Conclusion: In this work, it is shown that machine learning techniques can be a useful tool for both prediction and interpretation in the survival context. From the ML techniques examined here, PLANN with 1 hidden layer predicts survival probabilities the most accurately, being as calibrated as the Cox model with all variables.


Author(s):  
Mehmet Fatih Bayramoglu ◽  
Cagatay Basarir

Investing in developed markets offers investors the opportunity to diversify internationally by investing in foreign firms. In other words, it provides the possibility of reducing systematic risk. For this reason, investors are very interested in developed markets. However, developed are more efficient than emerging markets, so the risk and return can be low in these markets. For this reason, developed market investors often use machine learning techniques to increase their gains while reducing their risks. In this chapter, artificial neural networks which is one of the machine learning techniques have been tested to improve internationally diversified portfolio performance. Also, the results of ANNs were compared with the performances of traditional portfolios and the benchmark portfolio. The portfolios are derived from the data of 16 foreign companies quoted on NYSE by ANNs, and they are invested for 30 trading days. According to the results, portfolio derived by ANNs gained 10.30% return, while traditional portfolios gained 5.98% return.


Sign in / Sign up

Export Citation Format

Share Document