scholarly journals IOT Security Challenges and Measures to Mitigate: Novel Perspectives

2018 ◽  
Vol 7 (2.7) ◽  
pp. 854
Author(s):  
Manas Kumar Yogi ◽  
Y Himatej ◽  
M Mahesh reddy

The Internet Of Things describes the ever-growing number of intelligent objects that are being connected to the internet and each other, smartphones, tablets, wearable technology and smart home devices are adopted into our everyday lives. The security of IOT is becoming more complex and may have a serious consequence. So, now we have many security challenges like privacy concerns, routine cryptography, passive data collection etc. Many people hide personal data in social media to eliminate these sort of privacy issues but common man nowadays is becoming a passive participant due to lack of security in these IOT devices that are surrounding us.

2018 ◽  
Author(s):  
Henry Tranter

Security is always at the forefront of developing technologies. One can seldom go a week without hearing of a new data breach or hacking attempt from various groups around the world, often taking advantage of a simple flaw in a system’s architecture. The Internet of Things (IoT) is one of these developing technologies which may be at risk of such attacks. IoT devices are becoming more and more prevalent in everyday life. From keeping track of an individual’s health, to suggesting meals from items available in an individual’s fridge, these technologies are taking a much larger role in the personal lives of their users. With this in mind, how is security being considered in the development of these technologies? Are these devices that monitor individual’s personal lives just additional vectors for potential data theft? Throughout this survey, various approaches to the development of security systems concerning IoT devices in the home will be discussed, compared, and contrasted in the hope of providing an ideal solution to the problems this technology may produce.


2018 ◽  
Author(s):  
Henry Tranter

Security is always at the forefront of developing technologies. One can seldom go a week without hearing of a new data breach or hacking attempt from various groups around the world, often taking advantage of a simple flaw in a system’s architecture. The Internet of Things (IoT) is one of these developing technologies which may be at risk of such attacks. IoT devices are becoming more and more prevalent in everyday life. From keeping track of an individual’s health, to suggesting meals from items available in an individual’s fridge, these technologies are taking a much larger role in the personal lives of their users. With this in mind, how is security being considered in the development of these technologies? Are these devices that monitor individual’s personal lives just additional vectors for potential data theft? Throughout this survey, various approaches to the development of security systems concerning IoT devices in the home will be discussed, compared, and contrasted in the hope of providing an ideal solution to the problems this technology may produce.


Author(s):  
Muawya N. Al Dalaien ◽  
Ameur Bensefia ◽  
Salam A. Hoshang ◽  
Abdul Rahman A. Bathaqili

In recent years the Internet of Things (IoT) has rapidly become a revolutionary technological invention causing significant changes to the way both corporate computing systems, and even household gadgets and appliances, are designed and manufactured. The aim of this chapter is to highlight the security and privacy issues that may affect the evolution of IoT technology. The privacy issues are discussed from customer perspectives: first, the IoT privacy concern where the privacy debates on IoT and the IoT privacy that reflected from users' perspective based on the examination of previous researches results. In addition, the different architectures for IoT are discussed. Finally, the chapter discusses the IoT security concern by collecting, analyzing and presenting the major IoT security concerns in the literature as well as providing some potential solutions to these concerns.


2019 ◽  
Vol 6 (1) ◽  
pp. 15-30 ◽  
Author(s):  
Yasmine Labiod ◽  
Abdelaziz Amara Korba ◽  
Nacira Ghoualmi-Zine

In the recent years, the Internet of Things (IoT) has been widely deployed in different daily life aspects such as home automation, electronic health, the electric grid, etc. Nevertheless, the IoT paradigm raises major security and privacy issues. To secure the IoT devices, many research works have been conducted to counter those issues and discover a better way to remove those risks, or at least reduce their effects on the user's privacy and security requirements. This article mainly focuses on a critical review of the recent authentication techniques for IoT devices. First, this research presents a taxonomy of the current cryptography-based authentication schemes for IoT. In addition, this is followed by a discussion of the limitations, advantages, objectives, and attacks supported of current cryptography-based authentication schemes. Finally, the authors make in-depth study on the most relevant authentication schemes for IoT in the context of users, devices, and architecture that are needed to secure IoT environments and that are needed for improving IoT security and items to be addressed in the future.


Sensors ◽  
2019 ◽  
Vol 19 (19) ◽  
pp. 4121 ◽  
Author(s):  
Alberto Giaretta ◽  
Nicola Dragoni ◽  
Fabio Massacci

Cybersecurity is one of the biggest challenges in the Internet of Things (IoT) domain, as well as one of its most embarrassing failures. As a matter of fact, nowadays IoT devices still exhibit various shortcomings. For example, they lack secure default configurations and sufficient security configurability. They also lack rich behavioural descriptions, failing to list provided and required services. To answer this problem, we envision a future where IoT devices carry behavioural contracts and Fog nodes store network policies. One requirement is that contract consistency must be easy to prove. Moreover, contracts must be easy to verify against network policies. In this paper, we propose to combine the security-by-contract (S × C) paradigm with Fog computing to secure IoT devices. Following our previous work, first we formally define the pillars of our proposal. Then, by means of a running case study, we show that we can model communication flows and prevent information leaks. Last, we show that our contribution enables a holistic approach to IoT security, and that it can also prevent unexpected chains of events.


Author(s):  
Dan-Radu Berte

Abstract IoT, or the Internet of Things, has been in use since circa 1999. It defines a next chapter in the evolution of the Internet where computing devices embedded in everyday objects are able to send and receive data themselves. In recent years miniaturization and economies of scale brought a boon of new devices to the consumer and enterprise market, prompting Gartner to predict over 20bln live IoT devices by 2020. However, the definition of IoT is loose and, for the purpose of predicting trends or discussing security, formulating a clear understanding of the term is crucial. In fact, Internet of Things is a term only mostly used by the media, academia and the industry. Customers in the consumer space refer to the technologies by their benefit describing term of “Smart Home”. A quick analysis of this gap shows how it’s entirely possible no knowledge permeates the business and market worlds because of the incompatible terms used. As more devices, OSes and heterogeneous platforms entrench the concept of a new digital lifestyle, the new “Digital Kingdom” opens its doors to radical disruption, such as the latest massive Mirai and Reaper attacks. Our ability to correctly define the IoT, it’s platforms and components, should lead to better market dynamics and better preparedness, as one can’t secure something that can’t be defined. This paper proposes to further understand the IoT by exploring available definitions, reiterating misuse and equivocal perception, concluding with a more suiting, contemporary definition.


2020 ◽  
Vol 2020 (3) ◽  
pp. 276-1-276-15
Author(s):  
Franziska Schwarz ◽  
Klaus Schwarz ◽  
Reiner Creutzburg

Since its invention, the Internet has changed the world, but above all, it has connected people. With the advent of the Internet of Things, the Internet connects things today much more than people do. A large part of the Internet of Things consists of IoT controlled Smart Home devices. The Internet of Things and the Smart Home have become an increasingly important topic in recent years. The growing popularity of Smart Home devices such as Smart TVs, Smart Door Locks, Smart Light Bulbs, and others is causing a rapid increase in vulnerable areas. In the future, many IoT devices could be just as many targets. The many new and inexperienced manufacturers and the absence of established uniform standards also contribute to the precarious situation. Therefore, new methods are needed to sensitize and detect these threats. In this paper, different existing approaches like those of the National Institute of Standards and Technology (NIST) and the Open Web Application Security Project (OWASP) are combined with concepts of this work like the Smart Home Device Life Cycle. In the context of this paper, a universal 31-page question-based test procedure is developed that can be applied to any Smart Home device. Based on this new, innovative security checklist, the communication between device, app, and the manufacturer's servers, as well as the firmware of IoT devices, can be analyzed and documented in detail. In the course of this paper, also a handout in the abbreviated form will be created, which serves the same purpose.


2016 ◽  
pp. 379-402 ◽  
Author(s):  
Scott Amyx

This chapter identifies concerns about, and the managerial implications of, data privacy issues related to wearables and the IoT; it also offers some enterprise solutions to the complex concerns arising from the aggregation of the massive amounts of data derived from wearables and IoT devices. Consumer and employee privacy concerns are elucidated, as are the problems facing managers as data management and security become an important part of business operations. The author provides insight into how companies are currently managing data as well as some issues related to data security and privacy. A number of suggestions for improving the approach to data protection and addressing concerns about privacy are included. This chapter also examines trending issues in the areas of data protection and the IoT, and contains thought-provoking discussion questions pertaining to business, wearables/IoT data, and privacy issues.


2020 ◽  
Vol 17 (1) ◽  
pp. 115-121 ◽  
Author(s):  
Soram Ranbir Singh ◽  
Khan Kumar Ajoy

With the advancements in wireless internet technology, a new computing ecosystem, the Internet of Things(IoT), has ushered in numerous devices in many areas in our life as well as in industries. The IoT is a computing notion that describes a scenario in which objects we use everyday are accessible using the internet and can be controlled from anywhere (Kung, Y.F., et al., 2018. Home Monitoring System Based Internet of Things. 2018 IEEE International Conference on Applied System Invention (ICASI), April; IEEE. pp.325–327; Singh, S. and Singh, N., 2015. Internet of Things (IoT): Security Challenges, Business Opportunities and Reference Architecture for E-Commerce. 2015 International Conference on Green Computing and Internet of Things (ICGCIoT), October; IEEE. pp.1577–1581). It could comprise devices with sensors to gather and broadcast data over the Internet (Singh, S. and Singh, N., 2015. Internet of Things (IoT): Security Challenges, Business Opportunities and Reference Architecture for E-Commerce. 2015 International Conference on Green Computing and Internet of Things (ICGCIoT), October; IEEE. pp.1577–1581). As per report of the research firm Gartner, the number of IoT objects will surpass 11.2 billion by 2018, and 20.4 billion by 2020. By 2020, the IoT industries will make revenue of almost 3 trillion US Dollars. As IoT devices are largely used in various areas of importance, it will definitely bring a lot of interests to hackers. It is worthwhile to quote here that hackers took away more than Rs 78 crore by hacking into router of Cosmos Bank based in Pune by duplicating debit cards in August, 2018. They carried out about 12 thousand unethical transactions worth Rs 78 crore in 28 countries. Hence, it is necessary to consider data privacy so that we can protect the data with limited system resource and technology. This paper proposes a new key management scheme with entity authentication for IoT devices. The proposed scheme uses modified Tate pairing. The presented scheme is apposite for IoT devices such as sensor networks due to their lower computational requirements.


2018 ◽  
Vol 2018 ◽  
pp. 1-15 ◽  
Author(s):  
Mohamed Seliem ◽  
Khalid Elgazzar ◽  
Kasem Khalil

The Internet of Things (IoT) is a network of Internet-enabled devices that can sense, communicate, and react to changes in their environment. Billions of these computing devices are connected to the Internet to exchange data between themselves and/or their infrastructure. IoT promises to enable a plethora of smart services in almost every aspect of our daily interactions and improve the overall quality of life. However, with the increasing wide adoption of IoT, come significant privacy concerns to lose control of how our data is collected and shared with others. As such, privacy is a core requirement in any IoT ecosystem and is a major concern that inhibits its widespread user adoption. The ultimate source of user discomfort is the lack of control over personal raw data that is directly streamed from sensors to the outside world. In this survey, we review existing research and proposed solutions to rising privacy concerns from a multipoint of view to identify the risks and mitigations. First, we provide an evaluation of privacy issues and concerns in IoT systems due to resource constraints. Second, we describe the proposed IoT solutions that embrace a variety of privacy concerns such as identification, tracking, monitoring, and profiling. Lastly, we discuss the mechanisms and architectures for protecting IoT data in case of mobility at the device layer, infrastructure/platform layer, and application layer.


Sign in / Sign up

Export Citation Format

Share Document