Key Management Scheme for Internet of Things Using an Elliptic Curve

2020 ◽  
Vol 17 (1) ◽  
pp. 115-121 ◽  
Author(s):  
Soram Ranbir Singh ◽  
Khan Kumar Ajoy

With the advancements in wireless internet technology, a new computing ecosystem, the Internet of Things(IoT), has ushered in numerous devices in many areas in our life as well as in industries. The IoT is a computing notion that describes a scenario in which objects we use everyday are accessible using the internet and can be controlled from anywhere (Kung, Y.F., et al., 2018. Home Monitoring System Based Internet of Things. 2018 IEEE International Conference on Applied System Invention (ICASI), April; IEEE. pp.325–327; Singh, S. and Singh, N., 2015. Internet of Things (IoT): Security Challenges, Business Opportunities and Reference Architecture for E-Commerce. 2015 International Conference on Green Computing and Internet of Things (ICGCIoT), October; IEEE. pp.1577–1581). It could comprise devices with sensors to gather and broadcast data over the Internet (Singh, S. and Singh, N., 2015. Internet of Things (IoT): Security Challenges, Business Opportunities and Reference Architecture for E-Commerce. 2015 International Conference on Green Computing and Internet of Things (ICGCIoT), October; IEEE. pp.1577–1581). As per report of the research firm Gartner, the number of IoT objects will surpass 11.2 billion by 2018, and 20.4 billion by 2020. By 2020, the IoT industries will make revenue of almost 3 trillion US Dollars. As IoT devices are largely used in various areas of importance, it will definitely bring a lot of interests to hackers. It is worthwhile to quote here that hackers took away more than Rs 78 crore by hacking into router of Cosmos Bank based in Pune by duplicating debit cards in August, 2018. They carried out about 12 thousand unethical transactions worth Rs 78 crore in 28 countries. Hence, it is necessary to consider data privacy so that we can protect the data with limited system resource and technology. This paper proposes a new key management scheme with entity authentication for IoT devices. The proposed scheme uses modified Tate pairing. The presented scheme is apposite for IoT devices such as sensor networks due to their lower computational requirements.

Author(s):  
Aman Tyagi

Elderly population in the Asian countries is increasing at a very fast rate. Lack of healthcare resources and infrastructure in many countries makes the task of provding proper healthcare difficult. Internet of things (IoT) in healthcare can address the problem effectively. Patient care is possible at home using IoT devices. IoT devices are used to collect different types of data. Various algorithms may be used to analyse data. IoT devices are connected to the internet and all the data of the patients with various health reports are available online and hence security issues arise. IoT sensors, IoT communication technologies, IoT gadgets, components of IoT, IoT layers, cloud and fog computing, benefits of IoT, IoT-based algorithms, IoT security issues, and IoT challenges are discussed in the chapter. Nowadays global epidemic COVID19 has demolished the economy and health services of all the countries worldwide. Usefulness of IoT in COVID19-related issues is explained here.


Sensors ◽  
2019 ◽  
Vol 19 (19) ◽  
pp. 4121 ◽  
Author(s):  
Alberto Giaretta ◽  
Nicola Dragoni ◽  
Fabio Massacci

Cybersecurity is one of the biggest challenges in the Internet of Things (IoT) domain, as well as one of its most embarrassing failures. As a matter of fact, nowadays IoT devices still exhibit various shortcomings. For example, they lack secure default configurations and sufficient security configurability. They also lack rich behavioural descriptions, failing to list provided and required services. To answer this problem, we envision a future where IoT devices carry behavioural contracts and Fog nodes store network policies. One requirement is that contract consistency must be easy to prove. Moreover, contracts must be easy to verify against network policies. In this paper, we propose to combine the security-by-contract (S × C) paradigm with Fog computing to secure IoT devices. Following our previous work, first we formally define the pillars of our proposal. Then, by means of a running case study, we show that we can model communication flows and prevent information leaks. Last, we show that our contribution enables a holistic approach to IoT security, and that it can also prevent unexpected chains of events.


2020 ◽  
Vol 17 (1) ◽  
pp. 402-408
Author(s):  
Soram Ranbir Singh ◽  
Khan Kumar Ajoy

The Internet of Things (IoT) has ushered in numerous devices in many areas in our life and in industries. It could comprise devices with sensors to gather and broadcast data over the internet. As the devices are IP-based and the media are shared, any user in the network can have an access to the communication contents. The only way to impose access control in the sensor networks is through cryptography. A key is applied to encrypt the communication to prevent from unauthorized access to the network. Choosing a suitable key management scheme is very important in sensor networks as it should satisfy the constraints of the sensors. There are two indispensable public cryptosystems available in the literatures-RSA and Elliptic curve cryptography (ECC). ECC gives strong resistance to cryptanalytic attacks. So, it is used with smaller key sizes than RSA (Valenta, L., et al., 2018. In Search of CurveSwap: Measuring Elliptic Curve Implementations in the Wild. 2018 IEEE European Symposium on Security and Privacy (EuroS&P), April; IEEE. pp.384–398). The most prettiness of using elliptic curve cryptography over other cryptosystems (i.e., RSA) is that it provides same security strength for a lesser key without breaching the system, thereby consuming less resources and ameliorating performances and fast data throughput of the devices. To choose a suitable public cryptosystem for use in IoT devices like sensor networks, elliptic curve cryptography and RSA are comparatively analyzed in this paper.


2019 ◽  
Vol 94 ◽  
pp. 101948 ◽  
Author(s):  
Yasmine Harbi ◽  
Zibouda Aliouat ◽  
Allaoua Refoufi ◽  
Saad Harous ◽  
Abdelhak Bentaleb

Electronics ◽  
2021 ◽  
Vol 10 (21) ◽  
pp. 2647
Author(s):  
Stefan Balogh ◽  
Ondrej Gallo ◽  
Roderik Ploszek ◽  
Peter Špaček ◽  
Pavol Zajac

Internet of Things connects the physical and cybernetic world. As such, security issues of IoT devices are especially damaging and need to be addressed. In this treatise, we overview current security issues of IoT with the perspective of future threats. We identify three main trends that need to be specifically addressed: security issues of the integration of IoT with cloud and blockchains, the rapid changes in cryptography due to quantum computing, and finally the rise of artificial intelligence and evolution methods in the scope of security of IoT. We give an overview of the identified threats and propose solutions for securing the IoT in the future.


Tehnika ◽  
2020 ◽  
Vol 75 (6) ◽  
pp. 678-683
Author(s):  
Milica Đekić

The Internet of Things (IoT) is a quite recent paradigm going a decade back to the past. With the development and deployment of wireless technologies this new advancement has taken the part in the consumers' lives and businesses. In other words, the IoT is a pretty convenient way to correlated devices with each other and make them communicate in such a network. This is feasible using the internet connection and differently saying, all IoT devices forming the IoT asset got their IP addresses. From this perspective, it's quite clear that this technology got a lot of advantages and the users may feel so thankful for being the part of an IoT community. On the other hand, the consumers would spend less time thinking about the possible security concerns being linked to this new improvement. In this paper, we intend to discuss how secure our IoT infrastructure is, what its strategic implications are and why cyber industry should invest more time and effort in order to better research and develop this concept. In addition, we would try to deal a bit more with the IoT crawlers as the tools for investigating the IoT network and being so handy for both - researchers and hacker's groups.


2019 ◽  
Vol 8 (3) ◽  
pp. 7917-7921

With the advent of smart devices, a huge paradigm shift is observed in the way the users define service quality. Further, these devices or Internet of Things (IoT) devices as they are generally addressed, have acted as catalyst for comfort and connectivity and are building blocks of Smart City environment. With limited thought related to security is involved during the deployment of such devices, they offer a dangerous environment of opportunity to the attackers from the internet; which not only jeopardize network security, bus also the privacy of the users. Hence, it is of utmost importance to address the security concerns in smart city environment. This paper attempts to study the current IoT technologies deployed in a smart-city environment along with its vulnerabilities and possible solutions to improve IoT security. An approach is made to study the various vulnerabilities available with the IoT devices deployed in the smart city setup, various motivation of an attacker and the analyse some of the recent attacks witnessed by IoT devices. A few possible solutions for mitigation are suggested in this paper. The findings of the paper can be implemented in any network of IoT devices


Sign in / Sign up

Export Citation Format

Share Document