scholarly journals Multiple targets detection in the marine environment using matlab

2018 ◽  
Vol 7 (4) ◽  
pp. 2397
Author(s):  
Jainuddin SK ◽  
Satyanarayana P ◽  
Aruna V.B.K.L

This paper implements multiple targets detection against sea clutter by mathematically modeling target as a single point target and sea-clutter as k-distribution model and observing the deterioration in the effective operation of radar using signal processing by matlab. A Variability Index (VI) algorithm is suggested for detection on the basis of constant false-alarm rate (CFAR) property even in heteroge-neous conditions. Comparative analysis of VI-CFAR against various CFAR methods (CA, GO, SO, OS) for multiple targets detection in heterogeneous environment is done in this paper. Comparison and evaluation is done by means of the data which is simulated in MATLAB. The logical operation of the method is verified in heterogeneous condition. 

Author(s):  
Yuxin Qin ◽  
Yu Chen

The effect of ship navigation radar signal processing has a great impact on the overall performance of the radar system. In this paper, the signal processing algorithm is studied. Firstly, the principle of radar azimuth and distance monitoring is introduced, then the pulse accumulation algorithm and median filtering algorithm are analyzed, and finally a sea clutter suppression algorithm based on sensitivity time control (STC) and a rain and snow clutter suppression algorithm based on constant false alarm rate are designed to improve the target monitoring performance of radar. In the test of the algorithm, the radar signal processing algorithm designed in this study has good precision as monitoring error of the target's azimuth and distance is controlled within 1%; and it also has a better suppression effect of sea clutter and rain and snow clutter, which can suppress the clutter well, improve the target clarity, and ensure the safe navigation of the ship. The experiment proves the effectiveness of the proposed algorithm and provides some theoretical basis for the better processing of radar signals, which is beneficial to improve the environment perception ability of ships in harsh environments and promote the further development of the navigation industry.


1993 ◽  
Vol 46 (3) ◽  
pp. 447-447

There was an error in Mr Richard Trim's paper, ‘Some causes of problems in the observation of standard racon marine beacons when observed by means of standard marine navigation radars’, which was published in the May 1993 issue of the Journal of Navigation. Section 3, paragraph 4 of page 276 should read:‘A third and very important cause of radar received-signal differentiation arises if a widely used form of automatic anti-sea-clutter processing is employed, since part of this processing is to differentiate the radar-received video so as to remove the d.c. term in the sea clutter echoes as part of the Constant False Alarm Rate (CFAR) processing. When such automatic sea clutter supression facilities are in operation, the gain level applied to the radar receiver video amplifier has an adaptive signal superimposed upon it which, while slow acting, generally follows the shape of the clutter returns on the received signal video, while being largely unaffected by the wanted echo returns such as those from ships, navigation marks, coastlines, etc. This effect may be reduced in the case of the very latest radar designs’.


2012 ◽  
Vol 433-440 ◽  
pp. 6417-6421
Author(s):  
Fu Yong Qu ◽  
Xiang Wei Meng

Because of nonparametric detectors’ ability of ensuring constant false alarm rate (CFAR) for a wide class of input noise distributions and engineering implementation simply, much efforts have been directed towards the study of nonparametric methods of signal detection. This paper deals with a comparative analysis of nonparametric detectors-GS, MW, Savage detector under K-distributed clutter in homogeneous and nonhomogeneous background caused by multiple targets and clutter edge. Some results of detection probability versus signal-to-clutter ratio (SCR) are presented in curves for different detector parameter values in homogeneous and multiple targets background. And the ability to control the false alarm probability for the three nonparametric detectors is presented in table. The simulation results show that S detector performs robustly in homogeneous background and clutter edge background, and can tolerate more interfering targets through increasing the number of reference cells and pulse sweeps. Therefore as a compromise solution, S detector with moderate parameters can be used in actual radar system.


2014 ◽  
Vol 2014 ◽  
pp. 1-14
Author(s):  
Liqiang Liu ◽  
Yuntao Dai ◽  
Jinyu Gao

Using the sea clutter image from X-Band radar for current retrieval is an effective way of obtaining information on ocean currents. Traditional methods used for current retrieval have been based on the least squares algorithm, which is not only simple and efficient but also generally speaking accurate. In order to improve the precision of current retrieval, this paper has, as its goal, the study of the used radar connected with sea clutter imaging for current retrieval, with the particle swarm optimization (PSO) algorithm being proposed. This method is achieved by obtaining a three-dimensional image spectrum, taking the high-order dispersion relation model as the theoretical distribution model of the wave energy points of three-dimensional image spectra, using a forward model within the PSO framework, and considering the requirements of the order of the model, weights and optimal distribution of the energy points, and so on in fitness function. Simulation results show that, compared with the traditional ILSM methods, the method provided in this paper is more flexible, with a capacity for a high dispersion relationship order, higher precision, and an increased stability in terms of current inversion.


Sign in / Sign up

Export Citation Format

Share Document