Variability Index Constant False Alarm Rate (VI-CFAR) for Sonar Target Detection

Author(s):  
Amit Kumar Verma
Sensors ◽  
2021 ◽  
Vol 21 (5) ◽  
pp. 1643
Author(s):  
Ming Liu ◽  
Shichao Chen ◽  
Fugang Lu ◽  
Mengdao Xing ◽  
Jingbiao Wei

For target detection in complex scenes of synthetic aperture radar (SAR) images, the false alarms in the land areas are hard to eliminate, especially for the ones near the coastline. Focusing on the problem, an algorithm based on the fusion of multiscale superpixel segmentations is proposed in this paper. Firstly, the SAR images are partitioned by using different scales of superpixel segmentation. For the superpixels in each scale, the land-sea segmentation is achieved by judging their statistical properties. Then, the land-sea segmentation results obtained in each scale are combined with the result of the constant false alarm rate (CFAR) detector to eliminate the false alarms located on the land areas of the SAR image. In the end, to enhance the robustness of the proposed algorithm, the detection results obtained in different scales are fused together to realize the final target detection. Experimental results on real SAR images have verified the effectiveness of the proposed algorithm.


2021 ◽  
Vol 13 (9) ◽  
pp. 1703
Author(s):  
He Yan ◽  
Chao Chen ◽  
Guodong Jin ◽  
Jindong Zhang ◽  
Xudong Wang ◽  
...  

The traditional method of constant false-alarm rate detection is based on the assumption of an echo statistical model. The target recognition accuracy rate and the high false-alarm rate under the background of sea clutter and other interferences are very low. Therefore, computer vision technology is widely discussed to improve the detection performance. However, the majority of studies have focused on the synthetic aperture radar because of its high resolution. For the defense radar, the detection performance is not satisfactory because of its low resolution. To this end, we herein propose a novel target detection method for the coastal defense radar based on faster region-based convolutional neural network (Faster R-CNN). The main processing steps are as follows: (1) the Faster R-CNN is selected as the sea-surface target detector because of its high target detection accuracy; (2) a modified Faster R-CNN based on the characteristics of sparsity and small target size in the data set is employed; and (3) soft non-maximum suppression is exploited to eliminate the possible overlapped detection boxes. Furthermore, detailed comparative experiments based on a real data set of coastal defense radar are performed. The mean average precision of the proposed method is improved by 10.86% compared with that of the original Faster R-CNN.


2019 ◽  
Vol 2019 (19) ◽  
pp. 5597-5601 ◽  
Author(s):  
Wenjing Zhao ◽  
Deyue Zou ◽  
Wenlong Liu ◽  
Minglu Jin

2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Sungho Kim ◽  
Kyung-Tae Kim

Small target detection is very important for infrared search and track (IRST) problems. Grouped targets are difficult to detect using the conventional constant false alarm rate (CFAR) detection method. In this study, a novel multitarget detection method was developed to identify adjacent or closely spaced small infrared targets. The neighboring targets decrease the signal-to-clutter ratio in hysteresis threshold-based constant false alarm rate (H-CFAR) detection, which leads to poor detection performance in cluttered environments. The proposed adjacent target rejection-based robust background estimation can reduce the effects of the neighboring targets and enhance the small multitarget detection performance in infrared images by increasing the signal-to-clutter ratio. The experimental results of the synthetic and real adjacent target sequences showed that the proposed method produces an upgraded detection rate with the same false alarm rate compared to the recent target detection methods (H-CFAR, Top-hat, and TDLMS).


Author(s):  
Thamir Saeed ◽  
Gufran Hatem ◽  
Jafar Abdul Sadah ◽  
Hadi Ziboon

In the radar system, detection represents a basic and important stage in the receiver side. The detection process is based on the thresholding criteria; two philosophies of this criteria, constant and adaptive threshold. The constant threshold is simple in design, but it has a mis-detection and does not control the false alarm rate. As for the adaptive threshold, it is powerful in target detection, and better control of the false alarm rate, where it is called Constant False Alarm Rate (CFAR). Lots of research in the CFAR design, but the gap in the previous works is that there is no CFAR algorithm can be working with all or most environmental fields and all or most target situations.In this paper, The CFAR, which can work with the most environment and most of the target situations, has been presented. The producing the design and implementation of the new practical CFAR processor is presented. Where, the new CFAR is a combination of the properties of three different CFAR algorithm (CA, OSGO, and OSSO), and from two different families; averaging and statistical. Where it has overperformed of it's is 97.25% for simulation and 96.25% for the implementable version for different target situations. The simulation analysis is made by using Matlab 2015, while the implementation is done by using Xilinx Spartan 700 3a.


Sign in / Sign up

Export Citation Format

Share Document