scholarly journals PO-105 Exercise regulates HMGB1 / TLR4 / NF- κ B pathway by H2S to improve OJ intestinal injury

2018 ◽  
Vol 1 (4) ◽  
Author(s):  
Changfeng Shao ◽  
Jiaqin Chen ◽  
Wei Chen ◽  
Qi Peng ◽  
Di Li ◽  
...  

Objective To study the effect of aerobic exercise on the damage of intestinal mucosal barrier function caused by obstructive jaundice(OJ)and to explore its mechanism of action. Methods  50 male KM mice were randomly divided into 5 groups: sham operation group (S), model group (M), exercise group (TM), DL-Propargylglycine + exercise (PT) group and sodium hydrosulfide + exercise (NT) group.In addition to the S group which are in the common bile duct to the abdominal wall hanging 48 hours to build mouse obstructive jaundice model. In the PT group, PAG (40 mg/kg) was intraperitoneally injected 7 days after surgery; NaHS (50 μmol/kg) was intraperitoneally injected in the NT group 7 days after surgery; TM group, NT group and PT group were graded at 0%, and the speed was 10m/min no weight training (30min/day).After 6 weeks, HE staining was used to observe the morphological changes of the intestinal mucosa.Biochemical analysis was used to detect the concentration of hydrogen sulfide (H2S) in blood and ileum, and total bilirubin (TBIL), alanine aminotransferase (ALT), and aspartate aminotransferase (AST) Liver function, diamine oxidase (DAO), D-lactic acid intestinal barrier function biochemical index; qRT-PCR and immunohistochemical staining were used to observe the expression changes of H2S-mediated related channel mRNA and protein(HMGB1, TLR4 and NF-Kbp6)in intestinal tissues. Results HE staining showed that the intestinal mucosa of group M was atrophied and the villus was broken.Compared with M group, the intestinal mucosa arrangement in TM group was relatively regular. Compared with TM group, intestinal mucosa atrophy in PT group, fluff hair loss, sparseness and disorder, partial mucosa The layer was separated from the lamina propria and the gland was severely damaged. The intestinal mucosa of the NT group was relatively regular, and the changes of intestinal mucosa atrophy were restored. Serum test results showed that H2S levels were higher in the TM group than in the M group; compared with the TM group, the PT group decreased and the NT group increased. DAO level: The TM group was lower than the M group; compared with the TM group, the PT group was elevated and the NT group was decreased.  Changes in serum D-lactic acid levels were similar to DAO. The results of qRT-PCR and immunohistochemical staining showed that the expressions of HMGB1, TLR4 and NF-Kbp6 mRNA and protein in the intestinal tissues of mice in TM group were significantly lower than those in M group and PT group, and the mRNA and protein expression levels in NT group were the lowest. Conclusions Aerobic exercise inhibits the HMGB1 / TLR4 / NF-κB signaling pathway through the H2S / CSE system, thereby exerting a protective effect on the intestinal mucosal barrier.

2021 ◽  
Author(s):  
Qingsheng Niu ◽  
Fang Liu ◽  
Jun Zhang ◽  
Xiaojun Yang ◽  
Xiaohong Wang

Abstract The unique features of post–cardiac arrest pathophysiology are often superimposed on the disease or injury, causing the cardiac arrest, as well as underlying comorbidities. Exogenous carbon monoxide (CO) was reported to reduce ischemia-reperfusion injury (IRI). This study aimed to assess the effects of CO releasing molecule-2 (CORM-2) on intestinal mucosal barrier function after cardiopulmonary resuscitation (CPR) in rats. For this purpose, we established a rat model of asphyxiation-induced cardiac arrest and resuscitation to study intestinal IRI, and measured the serum level of intestinal fatty-acid binding protein (I-FABP). The expression levels of claudin-3, occludin, ZO-1, tumor necrosis factor-alpha (TNF-α), interleukin-10 (IL-10), and nuclear factor kappa B (NF-κB) p65 were detected by Western blotting. CORM-2 up-regulated the expression levels of tight junction proteins (claudin-3, occludin, and ZO-1) in intestinal mucosa, leading to the reduction of the permeability of intestinal mucosa and reduced the release of proinflammatory cytokines. Besides, the CORM-2 exhibited anti-inflammatory effects by regulating the TNF-α/NF-κB pathway. In conclusion, CORM-2 treatment is clinically significant, preventing intestinal mucosal damage as a result of IRI during CPR.


2019 ◽  
Vol 20 (11) ◽  
pp. 2777 ◽  
Author(s):  
Zhihua Ren ◽  
Chaoyue Guo ◽  
Shumin Yu ◽  
Ling Zhu ◽  
Ya Wang ◽  
...  

Mycotoxins, which are widely found in feed ingredients and human food, can exert harmful effects on animals and pose a serious threat to human health. As the first barrier against external pollutants, the intestinal mucosa is protected by a mechanical barrier, chemical barrier, immune barrier, and biological barrier. Firstly, mycotoxins can disrupt the mechanical barrier function of the intestinal mucosa, by destroying the morphology and tissue integrity of the intestinal epithelium. Secondly, mycotoxins can cause changes in the composition of mucin monosaccharides and the expression of intestinal mucin, which in turn affects mucin function. Thirdly, mycotoxins can cause damage to the intestinal mucosal immune barrier function. Finally, the microbiotas of animals closely interact with ingested mycotoxins. Based on existing research, this article reviews the effects of mycotoxins on the intestinal mucosal barrier and its mechanisms.


2018 ◽  
Vol 22 (6) ◽  
pp. 731-738 ◽  
Author(s):  
Weiying Ren ◽  
Jiayu Wu ◽  
Li Li ◽  
Y. Lu ◽  
Y. Shao ◽  
...  

2020 ◽  
Vol 31 (1) ◽  
pp. 939-953
Author(s):  
Ting Sun ◽  
Hui Liang ◽  
Meilan Xue ◽  
Ying Liu ◽  
Anjing Gong ◽  
...  

2012 ◽  
Vol 7 (4) ◽  
Author(s):  
Yanxia Liu ◽  
Weiwei Xu ◽  
Lei Liu ◽  
Linming Guo ◽  
Yu Deng ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document