Real Time Implementation of New Hybrid Non Integer Order Control Strategy in DC Motor Speed Control System

Author(s):  
N.N Praboo ◽  
◽  
P.K Bhaba
Author(s):  
Deacha Puangdownreong

Over two decades, the fractional (non-integer) order PID (FOPID or PIλDµ ) controller was introduced and demonstrated to perform the better responses in comparison with the conventional integer order PID (IOPID). In this paper, the design of an optimal FOPID controller for a DC motor speed control system by the flower pollination algorithm (FPA), oneof the most efficient population-based metaheuristic optimization searching techniques, is proposed. Based on the modern optimization framework, five parameters of the FOPID controller are optimized by the FPA to meet the response specifications of the DC motor speed control system and defined as constraint functions. Results obtained by the FOPID controller are compared with those obtained by the IOPID designed by the FPA. As the simulation results show, the FOPID can provide significantly superior speed responses to the IOPID.


2012 ◽  
Vol 562-564 ◽  
pp. 1058-1062
Author(s):  
Xi Zhang ◽  
Wen Chao Chen ◽  
Jie Yang ◽  
Liu Hu

The DC motor has good characteristics of large starting torque and good traction and strong overload capacity, traditional battery motor vehicle often adopts DC motor drives as driving system and uses the series resistance to adjust speed. However, in actual coal production, since motor vehicles are often placed in wet, explosive and dusty environment, the speed control system of motor vehicle has strict proof and moisture requirements, however, the inherent characteristics of the DC motor make it a serious shortcoming in the coal mine production, there is an urgent need to improve the structure to meet today's actual demand for coal mine automated production. This article is in this context, to compare the DC motor speed control system with AC speed control system of the mine car, discussing today's mainstream technical programs of AC speed control system, focus on the analysis of the great differences over performance and economic efficiency of the speed control system of mine motor vehicle after adopting AC speed control system.


Author(s):  
Ayman Y. Yousef ◽  
M. H. Mostafa

<p>In this paper a dual open loop speed control system based on two independent PWM signals of small permanent magnet DC (PMDC) motors using PIC16F877A microcontroller (MCU) has been designed and implemented. The Capture/Compare/PWM (CCP) modules of the MCU are configured as PWM mode and the MCU is programmed using flowcode software package to generate two PWM signals with various duty cycles at the same frequency. A dual H-bridge channel chip SN754410 is used to drive the motors. The variation of PWM duty cycles is related directly to controlling the DC motors terminal voltage which directly proportional with speed of each motor. The complete PWM control system model has been simulated using proteus design suite software package. The development of hardware and software of the dual DC motor speed control system has been explained and clarified.</p>


2014 ◽  
Vol 543-547 ◽  
pp. 1373-1376
Author(s):  
Qi Shu Zhou ◽  
Jie Luo ◽  
Yan Lin Ji

Nowadays, communication protocols are used in safety-critical automotive applications. Among the communication protocols, FlexRay, with real-time and reliable characters, is expected to become the communication backbone for future automotive systems. Therefore, a DC motor speed control system based on FlexRay network is presented in this paper to verify these characters. The following works have been done in this paper: study the FlexRay protocol specification, design the structure, programming, analyze the test results to get transmission delay time. Using the test system, FlexRay network was verified that message can be transferred quickly and correctly.


2015 ◽  
Vol 743 ◽  
pp. 168-171 ◽  
Author(s):  
Xiao Lei Wang ◽  
Tai Yuan Yin ◽  
Jin Tao Chen ◽  
Jian Xun Liang ◽  
Yang Li

DC motor speed control system is a typical closed-loop control system ofelectromechanical control subject. This paper presents a fast and efficient developing method ofcontrol system based on MATLAB, overcoming the shortcomings of the low efficiency and longdesign cycle in the traditional control system, and completing the rapid design of DC motor speedcontrol system, with its whole process based on MATLAB through the combination and applicationof the multiple toolboxes of the MATLAB. It applies the System Identification toolbox ofMATLAB to model the DC motor, the Simulink toolbox to simulate the control system, SimulinkDesign Optimization toolbox to optimize the PID parameters automatically, and the RTWtechnology to generate the codes for the DSP target board. Compared with the traditional designmethod, this method is characterized by high-efficiency, high-speed, and easy adjustment, havingcertain significance to the design of other control systems.


2012 ◽  
Vol 241-244 ◽  
pp. 1143-1147
Author(s):  
Yi Yao ◽  
Jin Ling Jia ◽  
Guang Jian Chen ◽  
Xian Hai Wang

The paper describes design technology of FPGA and design method of SOPC, and designs DC motor speed control system based on SOPC technology. To be more specific, it includes establishing a Nios II embedded system on FPGA for which PWM, tachometer module and relative driver are customized. It also applies C language programming to actualize PID control algorithm, and conducts simulation on main system module functions.


Sign in / Sign up

Export Citation Format

Share Document