Effect of Fly ash, Silica fume, Glass Fiber and Polypropylene Fiber on Strength Properties of Composite Fiber Reinforced High Performance Concrete

Author(s):  
Sachin Patil ◽  
Somasekharaiah H M ◽  
Sudarsana Rao H ◽  
Vaishali G.Ghorpade
2009 ◽  
Vol 405-406 ◽  
pp. 329-339
Author(s):  
Jing Liu ◽  
De Hua Deng ◽  
Ming Yin ◽  
Xu Li Hu

In this paper, the influence of polypropylene fibers (PPF) and silica fume (SF) on chloride penetration of high performance concrete (HPC) containing fly ash (FA) was examined. Three different HPC in which the amount of ordinary Portland cement is 360 kg/m3, via., A concrete with 120 kg/m3 of FA, B concrete with 0.9 kg/m3 of PPF and 120 kg/m3 of FA, C concrete with 0.9 kg/m3 of PPF and 96 kg/m3 of FA and 24 kg/m3 of SF were used for the study. Chloride resistance of concrete was evaluated. From the tests, it is found that the incorporation of PPF and no SF has less influence on the chloride resistance of the fly ash concrete at the age of 28 days. SEM examines B and C concretes specimens illustrating that just incorporating PPF induced more porous fiber-matrix interfacial zone (FMIZ) in B concrete which is detrimental to the chloride resistance, but the microstructures of both the matrix and FMIZ in C concrete with PPF and SF are denser. The plastic shrinkage cracking test proves that the cracking areas on the surface of B and C concrete with PPF are 12.2% and 20.7% of A concrete without PPF respectively.


2018 ◽  
Vol 761 ◽  
pp. 120-123 ◽  
Author(s):  
Vlastimil Bílek ◽  
David Pytlík ◽  
Marketa Bambuchova

Use a ternary binder for production of a high performance concrete with a compressive strengths between 120 and 170 MPa is presented. The water to binder ratio of the concrete is 0.225 and the binder is composed of Ordinary Portland Cement (OPC), condensed silica fume (CSF), ground limestone (L), fly ash (FA) and metakaoline (MK). The dosage of (M + CSF) is kept at a constant level for a better workability of fresh concrete. Different workability, flexural and compressive strengths were obtained for concretes with a constant cement and a metakaoline dosage, and for a constant dosage (FA + L) but a different ratio FA / L. An optimum composition was found and concretes for other tests were designed using this composition.


Sign in / Sign up

Export Citation Format

Share Document