scholarly journals Strength and Durability Studies on Hybrid Fiber Reinforced High-Performance Concrete for Silica Fume Based Mineral Admixture

2021 ◽  
Vol 822 (1) ◽  
pp. 012041
Author(s):  
Adanagouda ◽  
H.M. Somasekharaiah
Materials ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 6944
Author(s):  
Julio A. Paredes ◽  
Jaime C. Gálvez ◽  
Alejandro Enfedaque ◽  
Marcos G. Alberti

This paper seeks to optimize the mechanical and durability properties of ultra-high performance concrete (UHPC). To meet this objective, concrete specimens were manufactured by using 1100 kg/m3 of binder, water/binder ratio 0.20, silica sand and last generation of superplasticizer. Silica fume, metakaolin and two types of nano silica were used for improving the performances of the concrete. Additional mixtures included 13 mm long OL steel fibers. Compressive strength, electrical resistivity, mercury intrusion porosimetry tests, and differential and thermogravimetric thermal analysis were carried out. The binary combination of nano silica and metakaolin, and the ternary combination of nano silica with metakaolin and silica fume, led to the best performances of the UHPC, both mechanical and durable performances.


2013 ◽  
Vol 357-360 ◽  
pp. 858-862
Author(s):  
Sheng Bing Liu ◽  
Li Hua Xu

The shear tests were made on 18 different groups of deep beams with steel fiber and polypropylene fiber according to the orthogonal experimental design. For comparison, 2 groups of high performance concrete deep beams without fiber were conducted. Shear ductility and deformation performance of deep beams were analyzed quantitatively. Results illuminate that failure mode of high performance concrete shear deep beam is splitting failure, while hybrid fiber reinforced HPC shear deep beam has two failure modes (splitting failure and diagonal compression failure). The mixing of hybrid fiber makes rigidity of HPC deep beam increase obviously, the strain of web horizontal reinforcement and web vertical reinforcement decrease significantly. The catastrophe of strain of cracked concrete is also obviously smaller and the descending step of loaddeflection curve is flatter when adding hybrid fiber. Hybrid fiber can greatly increase shear ductility of deep beams and shear ductility is at the most increased by 40.7% whereas it can not change the brittleness of shear damage radically. The volume fraction of steel fiber plays the most important role in shear ductility whereas the shape of steel fiber has minimum effect among analyzed six factors.


Author(s):  
V. Hemavathi ◽  
Mr. S. Rathna Swamy

A study has been made for the high performance concrete of grade M70, where two mineral admixtures like GGBS and Metakaolin has been used with the two fibers, one B glass fibers and asbestos fibers. If two fibers are used in the concrete then we are call is having a fiber reinforced concrete the asbestos fibers percentage was kept constant of about 0.33% and glass fibers % have been changed from 0.25, 0.75 and 1.0%. The cubes are casted for different water cement ratios which is 0.25,0.30 and 0.35. there cubes are tested for the strength teste and durability zero.


Author(s):  
Julio Paredes ◽  
Jaime C. Gálvez ◽  
Alejandro Enfedaque ◽  
Marcos G. Alberti

This paper seeks to optimize the mechanical and durability properties of ultra-high performance concrete (UHPC). To meet this objective, concrete specimens were manufactured by using 1,100 kg/m3 of binder, water/binder ratio 0.20, silica sand and last generation of superplasticizer. Silica fume, metakaolin and two types of nano silica were used for improving the performances of the concrete. Additional mixtures included 13mm long OL steel fibers. Compressive strength, electrical resistivity, mercury intrusion porosimetry tests and differential and thermogravimetric thermal analysis were carried out. The binary combination of nano silica and metakaolin, and the ternary combination of nano silica with metakaolin and silica fume, led to the best performances of the UHPC, both mechanical and durable performances.


2013 ◽  
Vol 357-360 ◽  
pp. 1110-1114
Author(s):  
Dong Tao Xia ◽  
Xiang Kun Liu ◽  
Bo Ru Zhou

A set of new hybrid fiber reinforced high-performance concrete was developed and studied by experiment. The fibers incorporated the concrete are the collection of the steel fiber, modified polypropylene fiber and polypropylene with total fiber content not more than 1%. And the compressive test, splitting tensile test and the flexural toughness test were performed on eight groups of specimens. Based on the load-deflection and load-CMOD curves and the equivalent flexural tensile strength, the effect of fiber volume fraction and hybrid mode upon concrete's mechanical properties and post-peak behavior were investigated. The test results show that the mixing of the three different fibers can increase concrete's splitting tensile strength and flexural toughness more effectively with no significantly effect on compressive strength. The mixture of the three different fibers exist the optimization problem. Based on the results of the analysis, the compatible proportion of the three fibers is 0.7% steel fiber, 0.19% modified polypropylene fiber and 0.11% polypropylene fiber.


Sign in / Sign up

Export Citation Format

Share Document