Performance Evaluation of Sewage Treatment Plant using Moving Bed Biofilm Reactor : A Case Study

Author(s):  
Siddharth Parashar ◽  
Bharat Nagar
2021 ◽  
Vol 9 (2) ◽  
pp. 051
Author(s):  
Dhuhan Dhuhan ◽  
Laili Fitria ◽  
Ulli Kadaria

Abstract The increase in the number of hotels in Pontianak City has a impact, namely the increase in the generation of wastewater. The hotel wastewater treatment process is widely used by hotels in Pontianak, especially at the Aston hotel, which already has a sewage treatment plant with suspended biological treatment. The processed water often does not meet the quality standards of wastewater which may be disposed of in accordance with PERMEN/LH/68/2016 concerning domestic wastewater quality standards. In this study, the parameters measured were BOD, TSS and pH. The purpose of this study was to determine the efficiency of Aston hotel wastewater treatment using an attached reactorMBBR (moving bed biofilm reactor) with Kaldnes K3 media in reducing BOD and TSS parameters. Growing microorganisms and biofilms on adhesive media for 14 days. Giving Kaldnes K3 adhesive media as much as 30%. Based on the research results of Aston hotel wastewater treatment with attached reactor MBBR able to reduce BOD and TSS parameters. Best lowering efficiency in attached reactor MBBR with the best time of 7 days was able to reduce the BOD parameter from 109.81 mg/L became 7.28 mg/L with an efficiency of 93.37%, and the TSS parameter decreased from the initial concentration of 78 mg/L to 8 mg/L and the efficiency was 89.74%.  Keywords : BOD, Kaldnes, Hotel Waste Waste, MBBR, TSS Abstrak Peningkatan jumlah hotel di Kota Pontianak memberi dampak, yaitu meningkatnya timbulan limbah cair. Proses pengolahan air limbah hotel banyak digunakan hotel-hotel di Pontianak. Hotel Aston telah memiliki instalasi pengolahan limbah dengan pengolahan biologi tersuspensi. Air hasil olahannya sering kali belum memenuhi baku mutu air limbah yang boleh dibuang sesuai dengan PERMEN/ LH/ 68/ 2016 tentang baku mutu air limbah domestik. Pada penelitian ini parameter yang diukur yaitu BOD, TSS dan pH. Tujuan dari penelitian ini adalah untuk mengetahui efisiensi pengolahan limbah cair hotel Aston menggunakan reaktor terlekat MBBR (moving bed biofilm reactor) dengan media Kaldnes K3 dalam menurunkan parameter BOD dan TSS. Dilakukan penumbuhan mikroorganisme dan biofilm pada media lekat K3 selama 14 hari. Pemberian media lekat Kaldnes K3 sebanyak 30% dari volume reaktor. Berdasarkan hasil penelitian, pengolahan limbah cair hotel Aston dengan reaktor terlekat MBBR mampu menurunkan parameter BOD dan TSS. Efisiensi penurunan terbaik pada reaktor terlekat MBBR dengan waktu 7 hari, mampu menurunkan parameter BOD dari 109,81 mg/L menjadi 7,28 mg/L dengan efisiensi 93,37 %, dan penurunan parameter TSS dari konsentrasi awal 78 mg/L menjadi 8 mg/L (efisiensi 89,74%). Kata Kunci : BOD, Kaldnes, Limbah Cair Hotel, MBBR, TSS.


Advanced wastewater treatment is the process that reduces the level of impurities in wastewater below that attainable through conventional secondary or biological treatment. It includes the removal of nutrients such as phosphorus and nitrogen and a high percentage of suspended solids. The removal of nitrogen and phosphorus from wastewater has become an emerging worldwide concern because these compounds cause eutrophication in natural water. A post-treatment process is therefore required to remove nitrogen and phosphorus from the effluent. Therefore, the purpose of this chapter is to provide the deeper knowledge of membrane technology, membrane bioreactor, sequential batch reactor, moving bed biofilm reactor, nitrification, denitrification, phosphorus removal from wastewater, carbon adsorption, and provide a design of a sewage treatment plant using moving bed biofilm reactor technology.


2009 ◽  
Vol 95 (1) ◽  
pp. 18-30 ◽  
Author(s):  
Kunwar P. Singh ◽  
Nikita Basant ◽  
Amrita Malik ◽  
Sarita Sinha ◽  
Gunja Jain

2021 ◽  
Author(s):  
Ahmed M. Faris ◽  
Haider M. Zwain ◽  
Majid Hosseinzadeh ◽  
Seyed Mostafa Siadatmousavi

Abstract Worldwide, most of treatment system are retuning sidestreams (SSs) to the plant wastewater head without treatment, and some innovations are only treating centrate. In this study, an innovative process was established to separately treat all SSs away from plant mainstream and return treated sidestream effluents to plant wastewater outfall instead of wastewater head. This innovative process aims to eliminate SSs impacts on full scale A2/O sewage treatment plant. To do so, a novel pilot extended nutrient moving bed biofilm reactor (EN-MBBR) was developed to treat all SSs lines (supernatant gravity thickener, underflow mechanical thickener, and centrate), and SSs elimination on full scale A2/O system was simulated using GPS-X7. The results of two steps innovative treatment showed that 98, 98, 93, 100, 85, 100 and 98% of TSS, BOD, COD, NH4, NO3, H2S and PO4-P were removed from SSs, respectively. The two steps innovative treatment combined degradation, nitrification, and dilution processes. The simulation results proved that eliminating SSs has eliminated hydraulic and pollutants shocks, reduced the volumes of full scale A2/O facilities, and minimized cost and energy. Moreover, the calibrated model was validated with R values more than 0.8 and NMSE values close to zero. To conclude, the innovative process in this study successfully treated SSs separately and eliminated their impacts.


Sign in / Sign up

Export Citation Format

Share Document