Synthesis Gas Production by Methane Partial Oxidation on Ni/Fe3O4-Ce0.75Zr0.25O2 Catalysts: Kinetic Study

2011 ◽  
Vol 14 (2) ◽  
pp. 133-139
Author(s):  
M. I. Sosa Vazquez ◽  
J. Salinas Gutierrez ◽  
D. Delgado Vigil ◽  
V. Collins-Martinez ◽  
A. Lopez Ortiz

Fe3O4-Ce0.75Zr0.25O2 (FeCZ) is an oxygen carrier material aimed to produce syngas through methane partial oxidation in absence of oxygen gas feed. The objective of the present research is to study the catalytic effect of Ni on FeCZ using an evaluation of the global kinetics (activation energy, reaction rate, order and constant) of its reaction with methane for syngas production. FeCZ and 0.05NiFeCZ (Ni/Fe = 0.05 molar ratio) were synthesized through co-precipitation of their precursor nitrate salts, while 2NiFeCZ was prepared by impregnation of FeCZ with a nickel nitrate solution to obtain a 2 %W Ni material. Samples were calcined at 950°C during 4 hours in air. Kinetic study of oxygen carriers (FeCZ, 0.05NiFeCZ and 2NiFeCZ) reduction with methane was followed through thermogravimetric analysis (TGA) at 5, 7.5 and 10% CH4/Ar and 600, 650 and 700°C. Initial reaction rate was obtained from the slope of the linear region of the weight change signal as a function of time. Results indicate a first order global reaction rate for all materials. Activation energies for samples FeCZ, 0.05NiFeCZ and 2NiFeCZ were 52.2, 39.5 and 28.3 Kcal/mol, respectively. Thus, reflecting the catalytic effect of Ni over the FeCZ global reaction rate.

2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Yan Liu ◽  
Lang Qin ◽  
Zhuo Cheng ◽  
Josh W. Goetze ◽  
Fanhe Kong ◽  
...  

AbstractChemical looping methane partial oxidation provides an energy and cost effective route for methane utilization. However, there is considerable CO2 co-production in current chemical looping systems, rendering a decreased productivity in value-added fuels or chemicals. In this work, we demonstrate that the co-production of CO2 can be dramatically suppressed in methane partial oxidation reactions using iron oxide nanoparticles embedded in mesoporous silica matrix. We experimentally obtain near 100% CO selectivity in a cyclic redox system at 750–935 °C, which is a significantly lower temperature range than in conventional oxygen carrier systems. Density functional theory calculations elucidate the origins for such selectivity and show that low-coordinated lattice oxygen atoms on the surface of nanoparticles significantly promote Fe–O bond cleavage and CO formation. We envision that embedded nanostructured oxygen carriers have the potential to serve as a general materials platform for redox reactions with nanomaterials at high temperatures.


2021 ◽  
Vol 11 (10) ◽  
pp. 4713
Author(s):  
Carlos Arnaiz del Pozo ◽  
Schalk Cloete ◽  
Ángel Jiménez Álvaro ◽  
Felix Donat ◽  
Shahriar Amini

The hydrogen economy has received resurging interest in recent years, as more countries commit to net-zero CO2 emissions around the mid-century. “Blue” hydrogen from natural gas with CO2 capture and storage (CCS) is one promising sustainable hydrogen supply option. Although conventional CO2 capture imposes a large energy penalty, advanced process concepts using the chemical looping principle can produce blue hydrogen at efficiencies even exceeding the conventional steam methane reforming (SMR) process without CCS. One such configuration is gas switching reforming (GSR), which uses a Ni-based oxygen carrier material to catalyze the SMR reaction and efficiently supply the required process heat by combusting an off-gas fuel with integrated CO2 capture. The present study investigates the potential of advanced La-Fe-based oxygen carrier materials to further increase this advantage using a gas switching partial oxidation (GSPOX) process. These materials can overcome the equilibrium limitations facing conventional catalytic SMR and achieve direct hydrogen production using a water-splitting reaction. Results showed that the GSPOX process can achieve mild efficiency improvements relative to GSR in the range of 0.6–4.1%-points, with the upper bound only achievable by large power and H2 co-production plants employing a highly efficient power cycle. These performance gains and the avoidance of toxicity challenges posed by Ni-based oxygen carriers create a solid case for the further development of these advanced materials. If successful, results from this work indicate that GSPOX blue hydrogen plants can outperform an SMR benchmark with conventional CO2 capture by more than 10%-points, both in terms of efficiency and CO2 avoidance.


RSC Advances ◽  
2021 ◽  
Vol 11 (37) ◽  
pp. 23095-23104
Author(s):  
Asim Riaz ◽  
Wojciech Lipiński ◽  
Adrian Lowe

Cerium doping into the V2O5 lattice forms a reversible V2O3/VO redox pair after sequential methane partial oxidation and CO2/H2O splitting reactions and produces syngas (H2, CO) with fast rates and high oxygen exchange capacity.


2018 ◽  
Vol 565 ◽  
pp. 119-126 ◽  
Author(s):  
Zhitao Wang ◽  
Yi Cheng ◽  
Xin Shao ◽  
Jean-Pierre Veder ◽  
Xun Hu ◽  
...  

2021 ◽  
Vol 12 (1) ◽  
pp. 391
Author(s):  
Haiming Gu ◽  
Juan Yang ◽  
Guohui Song ◽  
Xiaobo Cui ◽  
Miaomiao Niu ◽  
...  

Chemical looping biomass gasification is a novel technology converting biomass into syngas, and the selection of oxygen carrier is key for efficient tar conversion. The performance of LaFe1-xNix as a robust catalytic oxygen carrier was investigated in the chemical looping conversion of toluene (tar model compound) into syngas in a fixed bed. LaM (M = Fe, Ni, Mn, Co, and Cu) was initially compared to evaluate the effect of transition metal on toluene conversion. LaFe (partial oxidation) and LaNi (catalytic pyrolysis) exhibited better performance in promoting syngas production than other oxygen carriers. Therefore, Ni-substituted ferrite LaFe1-xNix (x = 0, 0.2, 0.4, 0.6, 0.8 and 1) was further developed. The effects of Ni-substitution, steam/carbon ratio (S/C), and temperature on toluene conversion into C1 and H2 were evaluated. Results showed that the synergistic effect of Fe and Ni promoted toluene conversion, improving H2 yield yet with serious carbon deposition. Steam addition promoted toluene steam reforming and carbon gasification. With S/C increasing from 0.8 to 2.0, the C1 and H2 yield increased from 73.9% to 97.5% and from 197.7% to 269.6%, respectively. The elevated temperature favored toluene conversion and C1 yield. LaFe0.6Ni0.4 exhibited strong reactivity stability during toluene conversion at S/C = 1.6 and 900 °C.


Sign in / Sign up

Export Citation Format

Share Document